Computeralgebra Übung 2B **Ergänzung: Matrizen und Drehungen**

1. [matE_1]

Mit Hilfe von Matrizen lassen sich Drehungen beschreiben. Wenn man ein dreidimensionales kartesisches Koordinatensystem um eine Achse (bei festgehaltenem Ursprung) dreht, ändern sich die Koordinaten eines Punktes $\vec{r} = (x, y, z)$ zu $\vec{r}' = (x', y', z')$. Erfolgt diese Drehung **um die z – Achse** (Drehwinkel α), gilt: $\vec{r}' = D(\alpha) \vec{r}$,

$$D(\alpha) = \begin{pmatrix} \cos(\alpha) & \sin(\alpha) & 0 \\ -\sin(\alpha) & \cos(\alpha) & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ ist die zugehörige Matrix ; } \vec{r} = \vec{D}^{-1}(\alpha) \vec{r}' .$$

Bemerkung: Die Drehung des Koordinatensystems heißt **passive** Drehung, da die eigentlichen Objekte (insbesondere die geometrischen Orte) "liegen" bleiben. Nur ihre Koordinaten - Beschreibung ändert sich. Werden die Objekte selbst gedreht, spricht man von einer **aktiven** Drehung. Die Matrix für eine aktive Drehung um den Winkel φ entspricht der Matrix für die passive Drehung um den Winkel $-\varphi$.

- a) Bestimmen Sie die kartesischen Koordinaten von \vec{r}' , wenn \vec{r} gegeben ist . Führen Sie dies erst allgemein durch und dann für spezielle Drehwinkel. **Hinweis**: bezeichnen Sie im Programm den Vektor \vec{r}' z.B. mit rs (der Strich steht in Mathematica für die Ableitung).
- b) Bestimmen Sie die inverse Matrix zu $D(\alpha)$, also $D^{-1}(\alpha)$. Vergleichen Sie diese Inverse mit $D(-\alpha)$. **Hinweis**: Bezeichnen Sie die Drehmatrix im Programm z.B. mit DrehM; D ist in Mathematica ein reservierter Bezeichner.

Optional:

- c) Zeigen Sie, dass die Kreisgleichung $x^2 + y^2 = 1$ beim Übergang in ein gedrehtes ("gestrichenes") Koordinatensystem erhalten bleibt, also $x'^2 + y'^2 = 1$. Tipp: Drücken Sie x und y durch x' und y' aus mit Hilfe der Gleichung $\vec{r} = \vec{D}^{-1} \vec{r}'$. Setzen Sie dies in die Kreis-Gleichung ein.
- d) Zeigen Sie, dass aus der Hyperbel-Gleichung $x^2 y^2 = 1$ die bekannte Form y' = a/x' entsteht, wenn man zu einem um -45° gedrehten Koordinatensystem übergeht. Tipp: Drücken Sie x und y durch x' und y' aus mit Hilfe der Gleichung $\vec{r} = \vec{D}^{-1} \vec{r}'$. Setzen Sie dies in die obige Hyperbel-Gleichung ein.

Zeichnen Sie beide Koordinatensysteme und die Hyperbel $\,x^2-y^2=1\,$ in ein Bild. Tipp: ContourPlot .