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Abstract

According to the more abundant storm events in the last decade of the 20th century
the damages in forests are rising (PETERSON, 2000). For an adequate forest policy
it would be helpfully to know how trees will estimate their wind load risk. This
paper presents a simple model based on the hypothesis of Constant Stress relating
the stem geometry with the forces a stem has to resist like crown, wind and body
load. To validate this model the stem geometry and the crown weight of juvenile
Italian oak plans (Quercus ilex) have been measured. The result of the comparison
between the measurements and the model predictions suggests that the hypothesis
of Constant Stress is used by trees as a building rule for their stems.

Key words: optimal stem growth strategies, constant stress hypothesis, wind load
bearing capacity

Introduction

There are two basic mechanical features a tree stem has to fulfil. It has to
guarantee the conduction of water and minerals from the root to the leaves and
a flow of organic material in the opposite direction and it has to keep the crown
upright. This means that the stem neither buckles under normal forces like
crown and its own body load, nor breaks under wind, water and ice load. Plants
with secondary growth run a material strategy (BENDEROTH et al., 2000)
that means they fix their material properties quite early in their life but show
a variable growth of their stem geometry. Having a fixed material property the
buckling limit only depends on the stem geometry and the crown load. The
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stem geometry can be varied according to the crown load development. For
huge crowns a small stem with big diameters and for small crowns a slender
stem with small diameters is built by the organism. To achieve an adequate
stem growth the plant must have a construction rule, which makes such a
growth possible. An appropriate growth rule is the law of Constant Stress

recently reintroduced by MATTHECK (1990). The intention of this article is
to verify this hypothesis by a model and an adequate experiment.

Model

Stem growth like almost all other features of organisms is subject of an optimi-
sation process. Thus growth should take place at maximum mechanical safety
with a minimum amount of material at its least possible material quality. One
necessary condition to obtain this goal is, to avoid notch stresses. Because of
the particular load case of stems the highest stress will occur at the surface of
the construction (see fig 2). Therefore a geometry generating a homogenous
stress distribution at the stem’s surface fulfils this requirement (MATTHECK,
1990) (MATTHECK, 1992) because such a construction avoids notch stresses.
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Fig. 1. Sketch of the load conditions of a plant stem

In fig. 1 all sources of stress at a circular upright standing lever are shown.
The stress of such a structure at an arbitrary chosen cross section A(x) is
given by:
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σ(x, z) =
N(x)

A(x)
+

M(x)

I(x)
z(x) (1)

with N(x) are forces in longitudinal direction, M(x) are moments perpendic-
ular to the longitudinal direction, A(x) the cross section area of the beam,
I(x) the moment of inertia and z a cross section coordinate.

Assuming the Constant Stress hypothesis for the outer fibre of the lever in
the compression case and furthermore assuming for the longitudinal forces:

N(x) = Fk + γ

∫ x

ξ=0
A(ξ) dξ

for the moments:

M(x) = Fw x + Fk e +
∫ x

ξ=0
q(ξ) (x − ξ) dξ

and a circular cross section, the following model is derived from equation (1)
(for calculation details see Appendix A):

[

d(x)3 + S + K x + L
x2

2

]

d′(x) − d(x)
[

B d(x)3 + K + L x
]

= 0 (2)

by using the definitions:

B :=
γ

2 σ0
, K :=

16 Fw

π σ0
, L :=

16 q0

π σ0
, S :=

16 Fk e

π σ0
(3)

Equation (2) can be solved numerically with the initial condition d(0) = d0.
An analytic solution can only be obtained for particular solutions. Of special
interest are the particular solutions concerning the wind load. This load is
divided into two parts, one acting upon the stem (q0) and the other upon the
crown (Fw). For the particular case q0 = 0 eq. (2) can be solved (for calculation
see AppendixA). The solution is:
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Fig. 2. Stress distribution at a cross section of a stem caused by external loads

0 =
S [B d3

0 + K]
1
3

K d0
−

S [B d(x)3 + K]
1
3

K d(x)

−
S [B d(x)3 + K]

1
3 x

d(x)
+
∫ d(x)

d0

ζ

(B ζ + K)
2
3 dζ

(4)

The solution of the last term in eq. (4) is a hyper geometric series. Because of
this an explicit representation of eq. (4) can’t be given, but the envelopes of
eq. (4) can be derived. One envelope can be obtained, if Fw vanishes. For this
case the solution of eq. (4) is (for calculation see Appendix A):

0 =
S [d(x)3 − d3

0]

3 d(x)3 d3
0

− B x + ln
d(x)

d0
(5)

The opposite envelope can be generated from eq. (4) for the case that the
wind load is much larger than the body weight represented by γ = 0. For this
case the solution is:
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0 = d(x)3 +
2 S − d3

0

d0
d(x) − 2 (S + K x) (6)

The second particular solution is gained when Fw = 0 is set. In this case eq.
(2) becomes:

0 =

[

d(x)3 + S + L
x2

2

]

d′(x) − d(x)
[

B d(x)3 + L x
]

(7)

The envelopes of eq. (7) can also be generated (q0 = 0 or γ = 0). The solution
of (7) for q0 = 0 is identical with eq. (5). For γ = 0 the solution is (see
Appendix A):

0 = d(x)3 +
S − d3

0

d0
d(x) −

(

S +
L x2

2

)

(8)

The envelopes (6) and (8) differ only quantitatively but not qualitatively. That
means the wind load on the stem has the same effect as the wind load on the
crown in this model. Or in other words, any superposition of q0 and Fw has
the same effect as q0 or Fw alone. Therefore the sub model (4) is as meaningful
as the model itself.

A further simplification of the model can be made. All test specimens used
for this investigation show no eccentricity (e = 0) of the crown, thus eq. (4)
reduces to:

0 = −
[B d(x)3 + K]

1
3 x

d(x)
+
∫ d(x)

d0

ζ

[B ζ3 + K]
2
3

dζ (9)

For the rest of the investigation sub model (9) will be considered.

The envelopes of eq. (9) can be calculated from eq. (5) and eq. (6). The first
envelope is:

d(x) = d0 e
γ

2 σ0
x

(10)
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The second is:

0 = d(x)3 − d2
0 d(x) − 2 K x (11)

Both envelopes are monotonous and steady. In the case of eq. (10) the function
is strictly, progressively rising whereas eq. (11) is strictly digressively rising.
In a normalised plot all curves derived from eq. (10) will lay below the 45◦ line
whereas all curves derived from eq. (11) will lay above it. Hence all solutions
of eq. (9) will lay between these two solutions.
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Fig. 3. Normalised plot of the model (eq. (9))

Fig. 3 shows a relative plot of eq. (9). The parameter crown and wind load
were chosen arbitrarily.

A stem ignoring wind load will always grow by an exponential curve of its stem
shape, whereas the rising influence of the wind changes the shape towards to
a barrel shaped contour (see fig. 3).

The Test

To verify the model, the geometry of the stem and the forces acting on the
stem have to be measured.
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The test specimens were freshly cut, three years old juvenile oak shoots (Quer-
cus ilex) from the Tuscany in Italy. The specimens came from two different
sites. The specimen of the first sample (CI) grew up at a site with ambient
atmospheric CO2 concentration, whereas the second sample (EI) came from a
dip with elevated CO2 conditions caused by volcanic activities. The specimens
of this sample show a much enhance growth compared to the specimens of the
first sample.

From all test specimens the total height was taken from the top spot, where
all remaining branches were cut and taken as crown weight, down to the spot
where the stems were cut. To obtain geometric data of the test specimens
to evaluate the model it is necessary to distinguish between local and global
growth effects induced by stress. Each branch inserting at the stem transmits
a mechanical moment, which will cause growth at the stems surface to equalise
the stress at this insertion spot. This local stress effects the stem’s shape below
and above each particular insertion spot (node). To avoid these local effects
the nodes where the branches insert at the stem were not taken as measuring
sites. Instead of these sites the diameters in the middle of two nodes were mea-
sured. The distance from these points to the top of the stem was taken as the
height of that diameter. After measuring the diameter to height relation each
branch on the stem was cut and the weight of it including all twigs and leaves
was measured by a digital balance (SATORIUS). The distance of the middle
of the cutting area to the top of the stem was taken as the inserting height
of the branch at the stem. Diameters were measured by a digital calliper and
the lengths by a meter stick.

To determine the stem’s density pieces from the base of each stem were taken
as long as the stems were humid. All densities were only slightly different
from the density of water (0.98-1 kg/dm3). The density was determined by the
method of ARCHIMEDES on the same digital balance used for determining
the weights of the branches.

Results and Discussion

There is a huge difference in the quality of the different loads acting upon the
stem. The loads (crown and body load) generated by the plant itself, are and
will exist through the life time of the plant and can also be measured over
this period. This kind of loads can be characterised as internal or permanent
loads. Whereas loads not generated by the system itself (e.g. wind, water and
ice load) are neither permanent nor are their magnitudes fixed. These loads
are external or temporary loads. Since their appearance and their magnitude
are not certain, their impacts on the plant have to be estimated by the plant
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Table 1
Example of a data set (CI 10)

Diameter [mm] Height [mm] Mass [g] Height [mm]

5.9 50 19,4 0

6.2 90 2.3 20

6.3 125 3.3 30

6.5 175 2.4 50

7.0 235 3.3 80

7.0 350 0.4 150

7.0 390 0.7 200

7.6 430 1.3 250

7.7 500 0.9 350

8.2 600 0.6 500

8.7 700 1.0 600

9.1 800 0.7 700

itself.

Most of these loads are parameters in the model. How can these parameter
determined by experiments ? The permanent load body load depends on the
density of the material. This density is measurable by the plant and by the
experiment, too. Unfortunately the density depends on the hydration level of
the stem. Thus you will only get a temporary image of the actual density
value by the experiment. Even for the plant a maximum estimate will be the
appropriate value. The worst case approximation is the density of water. This
value is used within the evaluation of the model.

Because of the growth type of plants, crowns can only grow and can hardly
loose weight by themselves. Only by external events such as breaks of branches
a loss of weight can be attained. So if no breakage are detectable, the weight
of the crown is the worst case estimation for the crown load at the moment
the experiment is carried out. Thus the measured crown load is the right
estimation for the parameter crown load and can be used as a control value
for the goodness of the model.

Eccentricity is also an internal parameter. It can be detected by measuring the
contour of the plant. Difficulties arise in determining the centre of weight of
the crown to have an exact estimate for this parameter. In the case of the test
specimens used for this study the eccentricity is ignored, since all specimens
were almost completely grown upright.
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The parameter for the temporary loads can’t be measured. Measurable is the
response of the stem of each test specimen to the wind load. But this response
does not reflect a functional relation between the magnitude of the wind load
and the stem shape. Due to the temporary character of the load the organism
is able to run different strategies, from ignoring to over estimating the load
risk.

The analysing procedure is to estimate the parameters Fw, Fk and d0 from the
comparison of the model equations with the data by minimising the distance of
a data point to its estimated value by the model (Least Square Approximation).

As described in the model section and shown in fig. 3 a normalised diameter
to height relation which always lays below the 45 line can be mapped by sub
model (10). Thus analysis started with a normalise plot of the data (see fig.
4 and 5) to decide which stems can be mapped with which sub model. This
was done for all stems.
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Fig. 4. A normalised plot of the geometric data of stem CI-10

Regardless of the normalised plot analysis the parameter fit was carried out
with both sub models for all test specimens. In the case of sub model (10) the
measurable parameters crown load Fk can be derived from the initial stress
σ0 by the relation:

σ0 =
4 Fk

π d2
0

(12)
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Inserting relation (12) into eq. (10) and applying the natural logarithm to it
the model equation (10) transforms into:

ln[d(x)] = ln[d0] +
γ π d2

0 x

8 Fk

(13)

The estimation for Fk and d0 was made by a Least Square Fit :

Θ =
n
∑

i=1

{

ln[d0] +
γ π d2

0 xi

8 Fk

− ln[d(xi)]

}2
!
=min (14)

Calculation details are given in Appendix B. The equation for determining
the crown load and the initial diameter are:

ln[d0] =

∑

ln di

∑

x2
i −

∑

xi

∑

xi ln di

n
∑

x2
i − (

∑

xi)2

Fk =
γ π d2

0

∑

x2
i

8 (ln di

∑

xi − ln d0
∑

xi)

(15)

where xi and di are the experimental data and n is the number of data points.

Using sub model (9) for the analysis a linear approach for the optimisation pro-
cedure can not be used. To solve this optimisation problem, a simple stochastic
procedure (Monte Carlo) was used. For the sake of comparability the assump-
tion was made that σ0 of model (10) is equal to σ0 of model (9). In this case
relation (12) is also valid for sub model (9) and can be used for the calculation
of Fk. Thus estimates for the intervals of the parameter for the Monte Carlo

Algorithm could be centred around the results of the linear fit for d0 and Fk.
For Fw a large interval ranging from 0 to 10 N was chosen. The termination
criteria for the Monte Carlo routine was to obtain almost the same or even a
better Sum of Least Squares as for the linear optimisation.

Results of the parameter fit are given in table 2 and 3. Where Fk emp. is the
measured crown load, Fk lin. and Fk non are the estimated crown loads of the
different sub models (10, 9), err lin and err non lin the Sum of Least Square

for the different models and Fw the estimated wind load from the model.

The termination criteria for the Least Square optimisation was accomplished
in almost all cases.
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Table 2
Results of the test specimens of series CI

Fk emp. Fk lin. err. lin. Fk non err. non lin. Fw

CI 1 1.11E-01 3.23E-01 4.43E-07 5.40E-06 1.70E-06 8.62E-04

CI 2 8.18E-02 6.81E-02 1.68E-05 9.16E-02 6.38E-05 1.21E-03

CI 3 3.63E-01 2.19E-01 1.25E-06 4.72E-01 3.67E-06 1.20E-03

CI 4∗ 2.13E-01 1.24E-01 1.89E-06 2.26E-01 1.02E-06 5.66E-04

CI 5∗ 1.56E-01 2.35E-01 7.58E-06 1.65E-01 4.09E-06 9.74E-04

CI 6 2.92E-01 4.08E-01 3.16E-06 3.68E-01 3.79E-06 9.27E-05

CI 7 1.61E-01 1.05E-01 7.12E-07 1.35E-01 1.74E-06 5.67E-04

CI 8∗ 4.49E-02 1.10E-01 1.06E-05 6.66E-02 8.53E-06 9.27E-04

CI 9 1.88E-01 1.97E-01 1.58-06 2.26E-01 5.41E-06 1.03E-03

CI10 2.50E-01 2.43E-01 1.64E-07 5.92E-01 4.11E-07 1.08E-03

CI11 3.85E-01 2.93E-01 8.18E-07 3.82E-01 7.44E-05 1.46E-03

CI12 2.38E-02 4.26E-02 1.20E-06 8.48E-02 9.98E-06 5.08E-04

CI13 5.50E-01 1.31E-01 1.74E-06 1.82E-01 2.21E-06 7.66E-04

CI14 5.85E-01 3.81E-01 8.63E-06 5.52E-01 1.05E-05 1.86E-03

∗ optimal with wind load

The predicted crown load is for both sub models of the same magnitude as
the empirical value. Because eq. (10) is a sub model of (9), one may expect,
that in all cases the Sum of Least Squares in the non linear case must be equal
or smaller than those of the sub model (10). Due to the large variation in the
test data this is not always the case.

Because of this large variation and of the nature of the parameter Fw the
qualitative behaviour of the model can be evaluated. Exploiting another fea-
ture of the model makes it possible to evaluate the capacity of the model for
predicting the wind bearing capacity of an individual plant. As pointed out in
the model section sub model (10) is a strictly, monotonously and progressively
rising function. In a normalised plot such a function will always stay below
the bisection whereas sub model (9) will always show that at least a part of it
is above the 45 line. So by inspecting the normalised plots of the test data a
separation between those stems including wind load and those which do not
is possible (see fig. 4). Because of the errors the data are affiliated with the
plots were characterised with sub model (10) when 3/4 of the data points lay
below the bisection. All the other data sets were assigned to sub model (9).
Asterisks in tab. 2 and 3 indicate the test specimens belonging to sub model
(9).
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Table 3
Results of the test specimens of series EI

Fk emp. Fk lin. err. lin. Fk non err. non lin. Fw

EI 1∗ 1.18E-01 5.49E-02 1.31E-05 6.94E-02 4.03E-06 5.66E-04

EI 2 5.66E-02 8.38E-02 2.02E-05 8.48E-02 1.60E-05 5.08E-04

EI 3∗ 3.82E-02 6.19E-02 8.30E-06 7.58E-02 6.67E-06 2.00E-04

EI 4 2.51E-02 2.46E-02 7.44E-06 5.85E-02 1.10E-05 8.34E-04

EI 5 4.26E-01 2.57E-01 2.14E-06 6.49E-01 3.05E-06 9.18E-04

EI 6∗ 4.03E-02 4.02E-02 2.02E-05 6.17E-02 6.73E-06 1.37E-03

EI 7 1.90E-02 3.02E-02 2.19E-05 8.07E-02 8.67E-05 9.18E-04

EI 8∗ 1.55E-01 8.33E-02 8.31E-06 8.48E-02 7.13E-06 5.07E-04

EI 9∗ 3.41E-02 8.58E-02 3.46E-05 6.93E-02 1.28E-05 5.67E-04

EI 10∗ 1.59E-02 5.67E-02 7.23E-06 6.93E-02 4.23E-06 5.67E-04

EI 11∗ 3.39E-02 4.73E-02 1.87E-05 5.74E-02 2.52E-05 7.66E-04

EI 12 3.27E-01 3.09E-01 1.50E-06 2.89E-01 5.93E-06 1.03E-03

EI 14∗ 7.05E-02 8.54E-02 2.00E-05 1.82E-01 6.39E-06 1.63E-03

∗ optimal with wind load

As discussed in the model section testing the wind bearing capacity is only
possible in an indirect way. The hypothesis is:

If the model is able to predict the wind load bearing capacity, the prediction
of the crown load will be more precise if the right sub model according to the
normalise plot segregation is used. For testing this hypothesis a Goodness of

Fit test was made with:

χ2
emp =

n
∑

i=1

(

F data
ki

− F model
ki

)2

F model
ki

(16)

with n the number of test specimens

For a significance level of 1% and n-1 degrees of freedom. Results are given in
tab.4 and 5.

For series CI the hypothesis holds. If one tries to predict the crown load
with the wrong sub model the prediction fails. In the case of EI the result is
ambiguous. Only a trend towards the result of the Goodness of Fit test in the
series of EI can be recognised. This fact is probably due to the fertilisation
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Table 4
Goodness of fit test for the CI series of test plants with an error of 1%

emp vs. lin emp vs. non lin DOF χ2 at α = 0.01

linear 0.9810 2.5790 10 2.5880

non linear 0.1730 0.0119 2 0.0200

Table 5
Goodness of fit test for the EI series of test plants with an error of 1 %

emp vs. lin emp vs. non lin DOF χ2 at α = 0.01

linear 0.0879 0.3808 4 0.3000

non linear 0.2725 0.5078 7 1.2400

effect of the enhanced atmospheric CO2 content the sample was exposed to.
This enhanced CO2 content causes an increased growth of the plants of this
sample compared to the CI ones. Thus, the distances between two nodes are
much smaller in the EI than in the CI sample. This generates a much greater
overlay of local and global growth induced by the loads of the local branches
and the rest of the plant. This effect can be detected by the sums of the least
squares for both sample. The magnitude of these sums are approximately one
decimal power larger in the EI sample compared to the CI one (see tab. 2 and
3).

Testing the empirical crown loads vs. the model results for the linear and the
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Fig. 5. Examples of relative data and fit plots for different test specimens. The plots
on the left side show a case for which the model including wind load suited better.
The plots on the right side show the case for the model without wind load.
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non linear case shows an average deviation of the crown loads of 25% for model
(10) and of 15% for model (9). A test of the deviation of the mean values of
the crown loads show no significant at a significance level of 1% in both cases
(see tab. 6):

Table 6
Testing the deviations of the predicted crown loads from the test data for Series CI

mean emp mean model calc. t-value distr. t-value

model (10) 0.2480 0.185 0.89 2.58

model (9) 0.13 0.15 0.25 4.5

Because copies of such an age do not show an explicit crown, the test data
of the crown load were modified. For each measured diameter the hole load
caused by inserting branches and the parts of the stem (approximated by a
truncated cone) above this locus were added (see tab. 1). The Least Square

estimation was done for all different stem sections down to five geometric data
points of the stem’s diameter. Three different data sets from the CI series with
a smooth function pattern were chosen, to minimise the overlay between local
and global impacts of the stresses of the external forces.

Table 7 shows the results for a test specimen suited for sub model (9) and sub
model (10). Even under this difficult condition the model is able to predict
the loads in an acceptable range with the qualitative correct model version.

Finally the parameter σ0 has to be discussed. In addition to the buckling
boundary there is another boundary for the growth of tree stems. Each mate-
rial is only able to resist a certain maximum compression stress applied to it.
If this stress limit is exceeded the material starts to disaggregate. This stress
σl also exists for wood. According to the hypothesis of Constant Stress the
compression stress at any place of the stem is equal to the stress at the crown
insertion site. Thus the following relation holds:

Table 7
Results of two example test specimens at different heights and crown loads

Fk emp. Fk lin. err. lin. Fk non err. non lin.

CI 4∗ 2.13E-01 1.24E-01 1.89E-04 2.51E-01 1.02E-04

CI 4.1∗ 2.87E-01 1.51E-01 1.56E-04 4.10E-01 4.07E-05

CI 4.2∗ 5.99E-01 2.18E-01 8.07E-05 3.62E-01 6.19E-05

CI 4.3 6.28E-01 3.45E-01 1.05E-05 3.81E-01 1.08E-05

CI 4.4∗ 6.58E-01 3.64E-01 1.30E-05 5.34E-01 9.36E-06

CI 4.5∗ 6.54E-01 3.80E-01 9.91E-06 7.72E-01 7.33E-06
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σl > σ0 =
4 Fk

π d2
0

(17)

Because of this fact it would be reasonable to run a strategy σ0 = const more
or less close to σl. Due to this reasoning a linear correlation must be detectable
between the square of the stem’s diameter at the crown insertion site and the
crown load.
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Fig. 6. Linear regression plot of the square of d0 and the crown load Fk for the CI
data set

The regression plot in fig. 6 indicated that this seems to be the strategy of
the plants. Particularly because the regression analyses shows a correlation
coefficient close to one (0.94).

Conclusion

The model shows a good accordance between the predicted and the measured
crown load (see tab. 6). Furthermore it could be shown that correct predictions
of the crown load are strongly related with usage of the right sub model (see
tab. 4 and 5). That means the parameter wind load is needed for a correct
prediction, hence that figure can be taken as the reaction of the plant to
resist wind loading. Because storm events are random events concerning their
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occurrence and their magnitude calculating the effect of the wind impact on
the tree, which is highly non linear procedure (SILAS, 2002), will not solve
the problem at all. The random character of storm event forces trees to run a
particular strategy for resisting storm impacts. Besides the random character
of the storm impacts an investment into wind resistance lowers the possible
height of the stem. This fact can negatively effect the production capability
of the plant. For that the wind resistance strategy of the plant may be quite
different, if it lives under heavy light competition, compared to one with low
light competition. The magnitude of the wind force does not reflect a direct
correlation between the wind speed and its impact on the tree. But it tells
us the relative strategy relation of the different trees among each other. This
argument is also supported by the statement of WOOD (1995) that trees own
mechanisms to damp heavy swaying under wind load so that the major reason
for breaking and uprooting of the plants is the load itself.

In this study the model was applied to juvenile plants. The model itself doesn’t
own any restrictions concerning the plant species, beside they must show sec-
ondary growth, or its age. Therefore it should also work for other plants than
oaks and for adult plants, particularly because adult plants exhibit a much
more distinguishable stem and crown compared to juvenile ones. Thus adult
plants should show even much better results.

Furthermore a proportional relations between stem mass and root radius is
reported (MATTHECK et al., 1995). That means, that the different parts
of the tree are in sound relation to each other to avoid weak points of the
construction. These facts indicate that the calculated wind load capacity is
not only a measure for the stem but for the whole plant.

Finally the segregation of the test specimens between ambient and enhanced
CO2 conditions point out differences in in the growth strategies of the plants.
The only obvious difference was that the enhance growth of the CO2 treated
specimens caused problems in applying the model. The difference number of
specimens showing a wind load resistance (twice as much as in the ambient
CO2 case) can also be due to a higher variability of juvenile growth pattern
or to a different wind regime at the two sampling sites.
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A Appendix Calculation

Equation (1) gives a general description of the stress distribution of a beam
at an arbritrary cross section A(x) in the plane for any longitudinal load and
transversal moments.

For an optimal shape stem the hypothesis of constant stress is applied to (1)
meaning that the stress at the outer fibre of the beam has to be constant. Or
in other words σ(x, z = ∓zo(x)) = σ T

0 C = const. With this condition equation
(1) becomes:

σ T
0 C =

N(x)

A(x)
∓

M(x)

I(x)
z0[x] ∀ x ǫ [0, l] (A.1)

The ∓ sign in (A.1) indicates that there are different constant stresses at the
outer fibre due to the loading scenario (tension or compression see fig. 2). But
these fibres can be set individually constant.

An optimal stem shape means one has to consider A(x) in equation (A.1). For
analysing A(x) one has to differentiate (A.1) with respect to x because A(x)
is the integration limit of the moment of inertia (I(x) =

∫

A(x) z2 dA) in(A.1).
Thus equation (A.1) becomes:

0 =
N(x)

A(x)

[

N ′(x)

N(x)
−

A′(x)

A(x)

]

∓M(x)
zo(x)

I(x)

[

z′o(x)

zo(x)
−

I ′(x)

I(x)
+

M ′(x)

M(x)

]

(A.2)

Resolving equation (A.1) for N(x) and insert this expression into (A.2), one
finally gets for the general description of an optimised tension / compression
loaded beam:

0 =

[

N ′(x)

A′(x)
− σ T

0 C

]

∓M(x)
zo(x)

I(x)

A(x)

A′(x)

[

z′o(x)

zo(x)
+

A′(x)

A(x)
−

I ′(x)

I(x)
+

M ′(x)

M(x)

]

(A.3)

For the particular scenario given in fig. (1) some specifications have to be
made. First only the compression part will be taken into consideration (for
calculation convenience the + was taken). Thus σ T

0 = σ0. Second for the cross
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section a circular one is assumed. Thus one gets for the cross area, the cross
section variable and for the moment of inertia:

A(x) =
π

4
d(x)2, z0(x) =

d(x)

2
and I(x) =

π

64
d(x)4

Using all these relation for eq. (A.3) one gets:

0 = [2 N ′(x) − σ0 π d(x) d′(x)] + 16[d(x) M ′(x) − d′(x) M(x)] (A.4)

According to fig. (A.1) for the longitudinal forces N(x) holds:

F
k

Fw

x

G
x

e

q(x)

z

l
M(x)

Fig. A.1. Cut face of the loads for the model

N(x) = Fk + γ

∫ x

ξ=0
A(ξ) dξ = Fk +

γ π

4

∫ x

ξ=0
d(ξ)2 dξ

N ′(x) =
γ π

4
d(x)2

(A.5)

and for the moments M(x):
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M(x) = Fw x + Fk e +
∫ x

ξ=0
q(ξ) (x − ξ) dξ = Fw x + Fk e + q0

x2

2

M ′(x) = Fw + q0 x

(A.6)

with the simplification q(ξ) = const = q0

Equations (A.5) and (A.6) inserted into equation (A.4) results in:

0 =

[

d(x)3 + S + K x + L
x2

2

]

d′(x)−
[

B d(x)4 + K d(x) + L x d(x)
]

(A.7)

with the definitions given in (3)

Eq. (A.7) is a first order non linear differential equation of the form P (x, d(x))dx+

Q(x, d(x))dd(x) = 0. In the case that
∂P

∂x
=

∂Q

∂d
the equation is called an ex-

act differential equation. In the case of (A.7) an exact differential equation
doesn’t exist because:

P (x, d(x)) = −B d(x)4 − K d(x) − L x d(x)

Q(x, d(x)) = d(x)3 + S + K x + L
x2

2
∂P

∂d
= −4 d(x)3 − K − L x 6=

∂Q

∂x
= K + L x

(A.8)

Finding a factor µ(x, d(x)) satisfying this condition eq. (A.7 ) can be made ex-
act. The following differential equation holds for the integration factor (BRON-
STEIN (1980)):

(

∂P

∂d(x)
−

∂Q

∂x

)

= Q
∂ ln µ

∂x
− P

∂ ln µ

∂d(x)
(A.9)

According to (A.8) the left side of (A.9) is a function of x and d(x). Thus an
integrating factor can not be found and a solution of (A.7) can only be given
numerically.

Partial solutions of (A.7) can be given. Ignoring q0 the lhs of (A.9) is only
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a function of d(x). Thus µ is also only a function of d(x). So function (A.9)
degrades to:

(

∂P

∂d(x)
−

∂Q

∂x

)

= −P
∂ ln µ

∂d(x)
(A.10)

Resolve (A.10) for µ:

µ = e
−

∫

1
P ( ∂P

∂d(x)
−

∂Q
∂x )dd(x) = d(x)−2 (B d(x)3 + K)−

2
3 (A.11)

Multiplying (A.7) by (A.11):

0 = Q1dd(x)+P1dx =
d(x)3 + S + K x

d(x)2 [B d(x)3 + K]
2
3

dd(x)−
[B d(x)3 + K]

1
3

d(x)
dx (A.12)

Using the boundary condition d(0) = d0 the solution of (A.12) is:

0 =
∫ d(x)

d0

Q1(0, t) dt +
∫ x

0
P1(t, d(x)) dt =

S

K d0

(B d3
0 + K)

1
3 −

S + K x

K d(x)
(B d(x)3 + K)

1
3 +

∫ d(x)

d0

t dt

(B t3 + K)
2
3

(A.13)

The solution of the integral in (A.13) is a hyper geometric series. Eq. (A.13)
can only be solved numerically. But for the function (A.13) the envelopes can
be determined. The first envelope is:

1. Fw = 0

Using L’HOSPITAL’s rule the first part of Eq. (A.13) becomes:

lim

K → 0

S

3 d0 (B d3
0 + K)

2
3

=
S

3 B
2
3 d3

0

Using L’HOSPITAL’s rule the second part of eq. (A.13) becomes:
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lim

K → 0

S + K x + 3 x (B d(x)3 + K)

3 d(x) (B d(x)3 + K)
2
3

=
S + 3 x B d(x)3

3 B
2
3 d(x)3

and for the integral one gets:

∫ d(x)
d0

dt

B
2
3 t

= B−
2
3 ln

d(x)

d0

Assembled and rewritten:

0 =
S [d(x)3 − d3

0]

3 d(x)3 d3
0

− B z + ln
d(x)

d0
(A.14)

The second envelope of (A.13) for ignoring the body weight (γ = 0) is:

S

d0
−

N + K z

d(x)
+

d(x)2 − d2
0

2
= 0

Or in normal form:

d(x)3 +
2 S − d3

0

d0
d(x) − 2 (S + K x) = 0 (A.15)

If one ignores the wind load (Fw = 0) in eq. (A.7) this equation becomes:

[

d(x)3 ∗ S + L
x2

2

]

d′(x) − d(x) [B d(x)3 + L x] = 0 (A.16)

No integrative factor for (A.16) has been found. The envelopes of (A.16) can
be determined. For the first envelope (q0 = 0) the solution of (A.16) is (A.14).
For the other envelope (γ = 0) (A.16) becomes:

[

d(x)3 + S + L
x2

2

]

dd(x) − L x d(x) = 0 (A.17)

with
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P (x, d) = −L x d(x), Q(x, d) = d(x)3 + S + L
x2

2

because

∂P

∂d
= −L x 6= L x =

∂Q

∂x

an integrative factor has to be found. Since
1

P

(

∂P

∂d
−

∂Q

∂x

)

=
2

d(x)
is only a

function of d(x), the integrative factor can be gained as for eq. (A.7). So:

µ = e−
∫

2
d
dd =

1

d2

The differential equation (A.17) now reads:

0 =
1

d(x)2

[

d(x)3 + S + L
x2

2

]

dd(x) −
L x

d(x)
dx (A.18)

Eq. (A.18) can be integrated:

0 = −
L

d

∫ x
0 t dt +

∫ d(x)
d0

1

t2
(t3 + S) dt

or solved:

d(x)3 +
S − d3

0

d0
d(x) +

L x2 − 2 S

2
= 0 (A.19)

B Appendix Least Square

For estimating the model parameters of (10) a Least Square Fit is used. The
fit is done with the transformed equation (10) by natural logarithm. For the
Least Square Fit one gets:

Θ =
n
∑

i=1

{

ln[d0] +
γ π d2

0 xi

8 Fk

− ln[d(xi)]

}2
!
=min (B.1)
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With d0 the initial diameter of the stem, γ = ρ g body weight, Fk crown load.
d(xi) and xi are the data for diameter and height.

A necessary condition for the minimum of the function is that the derivatives
of Θ for the parameters Fk and d0 vanishes:

0 =
∂Θ

∂Fk

= 2
n
∑

i=1

{

ln[d0] +
γ π d2

0 xi

8 Fk

− ln[d(xi)]

}(

−
γ π d2

0 xi

8 Fk

)

0 =
∂Θ

∂d0
= 2

n
∑

i=1

{

ln[d0] +
γ π d2

0 xi

8 Fk

− ln[d(xi)]

}(

1

d0
+

γ π d2
0 xi

4 Fk

)

(B.2)

Resolving the first equation of (B.2) for Fk:

Fk =
γ π d2

0

∑

xi

8 [
∑

xi ln d(xi) − ln d0
∑

xi]
(B.3)

Inserting (B.3) into the second equation of (B.2) and resolve it for d0:

ln d0 =

∑

ln d(xi)
∑

x2
i −

∑

xi

∑

xi ln d(xi)

n
∑

x2
i − (

∑

xi)2
(B.4)

Resulting in two equations to determine the parameters d0 and Fk.
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