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Abstract. In this paper we apply the analytic feature framework, which
was originally proposed for the large scale identification of segmented
objects, for object detection in complex traffic scenes. We describe the
necessary adaptations and show the competitiveness of the framework
on different real-world data sets. Similar to the current state-of-the-art,
the evaluation reveals a strong degradation of performance with increas-
ing occlusion of the objects. We shortly discuss possible steps to tackle
this problem and numerically analyze typical occlusion cases for a car
detection task. Motivated by the fact that most cars are occluded by
other cars, we present first promising results for a framework that uses
separate classifiers for unoccluded and occluded cars and takes their mu-
tual response characteristic into account. This training procedure can be
applied to many other trainable detection approaches.
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1 Introduction

Despite extensive efforts the visual detection of objects in natural scenes is still
not robustly solved. The current best approaches usually extract unspecific local
features and apply a powerful classifier directly on top. So e.g. the combination
of Histograms of Oriented Gradients (HOG) [2] with a Support Vector Machine
(SVM) is reported to yield good performance in various detection benchmarks.
In contrast to this are methods that put effort in learning a more problem-specific
feature representation, on top of which a very simple classifier can be used for
discrimination. An example for such a method is the analytic feature architecture
proposed in [5], which showed high performance for large-scale identification of
segmented object views. In this paper we show that such an architecture can
also provide competitive results in detection tasks.

One main problem for systems acting in real world is that objects are often
occluded. This affects currently used object representations in different ways.
E.g. the methods that aggregate local features in a voting manner like [6, 7] are
usually trained with unoccluded views. During recognition they can deal with
arbitrary occlusion patterns as long as sufficiently many features can still be
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detected. In contrast to this are the methods that train holistic object templates
in a discriminative manner like [2, 5]. When training on unoccluded and testing
on occluded views these approaches show a much stronger relative decrease in
performance. The reason for this is the stronger specialization on the training
problem by focusing resources on differences between classes. However, in general
the voting methods perform worse than the discriminative ones, whenever test
and training set do not show such systematic differences, as discussed in [11] and
confirmed by the detection results in [3].

To exploit the benefits of discriminative approaches also for occluded objects,
one could simply train them with occluded and unoccluded views. But this
will likely reduce the performance for unoccluded views during testing. So more
advanced processing is necessary.

One possibility is to exploit the relation between occluding and occluded
object, which for natural scenes usually shows rather systematic patterns. The
detection approach in [9] first searches for larger and thus more easily detectable
objects and later exploits spatial relations to improve the detection of smaller,
more difficult ones. This concept can be transferred to the occlusion problem.
So one could train special detectors for different types of occlusion and exploit
their mutual response characteristic in a scene.

Other approaches that make use of object-object relations are presented in
[10, 4], where Markov-Random-Fields are used to infer if neighboring features
are consistent with a single detected instance or have to be assigned to different
ones. In this way both approaches can reason about relative depth of objects
and produce a coarse segmentation. However, in this paper we propose a more
directed search for occluded objects, instead of using such demanding iterative
processing over the full scene.

Also convolutional neural architectures were recently applied with great suc-
cess on current recognition [1] and segmentation benchmarks [8]. The problem of
occlusion, however, was not actively treated in these models so far. We propose
a particular training procedure for occluded and unoccluded detectors that can
be applied for these architectures similarly.

In Sec. 2 we outline how we adapted the analytic feature framework for
detection tasks. After a short description of the traffic scene data used in our
experiments, we evaluate the performance in Sec. 3. In Sec. 4 we propose a
possible way to improve the detection of occluded cars and provide a first proof
of concept on segmented car images, before drawing the conclusion in Sec. 5.

2 Adaptation of Analytic Feature Framework

We base our appearance-based detector on the real-time object identification
framework in [5], which uses an attention mechanism to generate size normalized
segments of the input object. Over the gray-scale segment first SIFT descriptors
[7] are computed on a regular grid. Each descriptor is then matched to a set
of 421 analytic features which are the result of the supervised selection process
proposed in [5]. After this for each feature the global maximum is computed over
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Fig. 1: (a) Analytic feature hierarchy. SIFT descriptors are computed on a regular
grid and matched to 96 analytic features. After a local maximum filter per feature
the SLP is used in a convolutive manner. Maxima in the final response map
denote possible car locations. (b) Some analytic features for two template sizes.

the segment, in this way removing all spatial information. Finally a Single Layer
Perceptron (SLP) is used to separate the 126 objects in the 421-dimensional
space. The approach is working robustly for full 3D rotation, even for untextured
objects which are notoriously difficult for the standard SIFT approach [7].

The application of the existing framework for full scene object detection
requires several adaptations. The rotation normalization of the SIFT descriptors
is switched off because cars usually occur only upright. To speed up processing
only 96 analytic features are used, where only features of the car class and not the
background class were selected (see some examples in Fig. 1b). On the highest
layer the SLP template is now used in a convolutive manner to generate the car
response map producing broad activation blobs for a car. The reason for this
was the global maximum operation over features inside the template, which we
had to replace with a local one to keep robustness against small translations.
The resulting feature architecture is shown in Fig. 1a.

To deal with cars at different distances, we train analytic features and SLPs
on three different segment sizes and use them on the largest image resolution,
while the largest template is also used on successively reduced resolutions. This
combined strategy improves detection performance because no compromise be-
tween minimal template size and most discriminative template size needs to be
found, which is a common drawback of other detection approaches.

3 Detection Results

We decided to use the detection framework proposed in this paper to locate cars
in real world traffic scenes. For this we equipped a car with a stereo camera and
acquired different streams with a total length of 45 minutes covering different
weather conditions (sunny, rainy, overcast) and scene types (city, rural, industry,
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Fig. 2: (a) ROC for our car detection scenario. The performance decreases
strongly with the percentage of the cars’ occlusion. (b) ROC for pedestrian
benchmark (unoccluded, 50 pixels or taller). The analytic approach is on par
with state-of-the-art approaches.

highway). For one frame per second we labeled typical traffic participants with
a ROI and also roughly estimated their percentage of occlusion.

To evaluate the car detection performance we split the image streams into
chunks of 30 seconds and used the odd chunks for the training of analytic fea-
tures and SLP templates and the even chunks for testing. We decided to exclude
car ROIs, whose width was more than twice their height (roughly 10% of the
data), from training. In this way the use of smaller and square SLP templates
was sufficient. So the templates were trained on segments of 42x42, 66x66, and
90x90 pixels (plus 18 pixels border at each side), into which the car was cen-
tered. Initially, the SLPs were trained to separate few thousand segments of
unoccluded cars from a larger set of randomly chosen non-car segments. During
5 bootstrapping steps more negative examples were generated.

Please note that we used the disparity information available for our image
data to reject implausible car candidates with simple hand-tuned rules on height-
above-ground and physical-size. Finally, a local competition removed further
weak hypotheses if they had a too strong overlap with more confident ones. For
the input images of size 800x600 the GPU implementation of our framework
runs with 10 frames per second on a mobile Geforce GTX580M.

The results for our car scenes are shown in Fig. 2a. We excluded cars with
a height below 35 pixels and used the common 50% mutual overlap criterion
between labels and detections. The curves reveal a strong dependency on the
percentage of the cars’ occlusion. For a false positive per image rate of 0.1 we
get 70% of the cars with an occlusion between 0-40%. This pure detection per-
formance is usually sufficient for a system that applies some kind of temporal
integration (tracking). However for higher percentages of occlusion the recall
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Table 1: Counts of car occluders and occluded car parts for the ground truth
data. In total 8796 out of 15514 cars are occluded, most of them by other cars.

Occluding object #

Another car 7061
Image border 2137
Motor bike 82

Occluding object #

Pedestrian 70
Traffic sign 31
Other/non-labeled 1125

Occluded part #

Left 3730
Right 3124
Middle (only) 90

drops severely, which can no longer be compensated at system level. In the next
section we propose a special approach for detection of occluded cars.

To get a comparison with state-of-the-art methods we decided to apply our
framework also to the pedestrian detection benchmark proposed in [3]. We eval-
uated the performance by doing 6-fold crossvalidation over the 6 streams and
averaged the results. In contrast to this the competitors in Fig. 2b used all
streams for testing and trained on other pedestrian data each. So the results
are not 100% comparable. However, because the streams are quite different from
each other and the overall label quality is not that high, there is no obvious
advantage in using the streams for training. So Fig. 2b roughly shows that we
are at least competitive to the popular HOG approach [2]. The main conceptual
difference to HOG is that it applies an SVM directly on top of the local gradi-
ent histograms, while we use an additional projection to the analytic features
and a simple SLP as classifier. Please note that because of the missing stereo
information only the mutual overlap heuristic was used here.

4 Occlusion Handling Using Object-Object Relations

In this section we propose a method to increase the detection performance for
occluded cars. Following our discussion in the introduction, for this we like to
exploit object-object relations. Taking into account that most cars are occluded
by other cars, as revealed by the analysis of the ground truth shown in Tab. 1,
we decided to implement following simple strategy: In order not to decrease
performance for unoccluded cars we will train a special classifier on occluded cars.
This new classifier will be applied in the vicinity of already detected cars only.
In a scene these initial car hypotheses are generated by the detection framework
described before using the classifiers trained on unoccluded cars. The conditional
application rule is necessary to avoid a strong increase of false positives (FP),
which would be the result of the independent usage of both classifiers.

For a fast proof of concept, we decided to first test this strategy on segmented
car and non-car views. So we generated data pairs i, each having a Foreground
segment F i containing the occluder and the corresponding Background segment
Bi containing something occluded. We refer to the set of all foreground/back-
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F i Bi

car car

1. Car occluding car: The occluding car is inserted as positive
example to F and the occluded car as positive to B.

car no car

2. Car not occluding car: The car is put as positive to F and a
randomly chosen, car-free region in its vicinity as negative to B.

no car no car

3. Car-free pairs: In a real scene the initial detector will produce
false positives. The FPs of our detection framework are inserted
as negatives to F and a randomly chosen, car-free region next to
each FP as negative example to B.

Fig. 3: Segment pair types. Each pair has a foreground segment F i and a back-
ground segment Bi. The positive examples (in gray) are generated from ground
truth. For simplification we only use samples with occlusion at the left side and
mirror examples with right occlusion to get more data. The classifier looks at the
marked inner 42x42 pixel region of the segments into which the cars are fitted.

ground segments with F = {F i} and B = {Bi} respectively. The types of pairs
that mimic all possible constellations in a scene are described in Fig. 3.

For the segment scenario we simply use the already trained SLP for a car size
of 42x42 as initial classifier, which will be referred to as CStd, and train the new
classifier COcc on the background segments B of same size using cars with an
occlusion up to 80%. The logic CCom combines CStd and COcc in a conditional
manner and predicts the labels LF i

and LBi
for each pair using the code:

LF i = ’no car’

LBi = ’no car’

if CStd(F i) ≥ TStd then

LF i
= ’car’

if CStd(Bi) ≥ TStd then

LBi = ’car’

else if COcc(Bi) ≥ TOcc then

LBi
= ’car’

So Bi is predicted as car, if either CStd or the new classifier COcc reaches its
corresponding threshold, and only if a car was found in the foreground segment
F i already. Some classification examples are shown in Fig. 4.

To show the benefit of the combined logic, in Fig. 5a we compare the per-
formance of CCom with CStd and in Fig. 5b with COcc. Please note that the
combined approach depends on the two thresholds TStd and TOcc, and thus we
have to evaluate the performance of CCom for each combination of them. How-
ever, most of the resulting points in the ROC curve are dominated by a small
set of other points. In the plot we only show a so called Pareto Front, which
describes the set of optimal combinations.
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F i

Ground truth car car car no car car no car

CStd ≥ TStd yes yes no no yes yes

CCom result TP TP FN TN TP FP

Bi

Ground truth car car car no car no car no car

CStd ≥ TStd yes no no no no yes

COcc ≥ TOcc yes yes yes yes yes no

CCom result TP TP FN TN FP FP

TP - true positive

TN - true negative

FP - false positive

FN - false negative

Fig. 4: Pair classification examples. For each foreground sample F i we show the
ground truth label, the decision of CStd, and the result of the combined approach
CCom. For Bi we additionally show the decision of COcc because CCom depends
on both classifiers and on the result for F i. Dark gray is used for ’no car’ labels
and responses below threshold, light gray for the opposite. The conditional logic
can correct FPs of COcc (4th column), but in rare cases also prevents correct
detections (3rd column). The classifiers look at the marked inner 42x42 region.

Figure 5a confirms again that CStd can cope substantially better with the
familiar foreground segments F than with the occluded segments in B. On the
combined data set F ∪ B the classification has some intermediate quality but
is clearly dominated by CCom. For example, at a recall of 0.8 CStd has a false
positive rate of 0.13, while that of the combined curve is 0.04. This is a threefold
reduction in the number of false positives.

In Figure 5b, COcc shows a very good performance on the occluded segments
B, for which it was trained. However, the performance for the unoccluded cars in
F is much worse. One reason for this might be that COcc specialized too strongly
on the edge that is caused by the occluder and which is not present in the
unoccluded examples. Also in comparison to COcc, CCom shows a substantially
improved performance on the full data ensemble.

5 Conclusion

In this paper we presented a new object detection framework, which is based on
the analytic feature representation originally proposed for object identification.
We have shown the competitiveness of the approach on a public pedestrian
detection benchmark and evaluated on our own benchmark how strong occlusion
effects the detection of cars. Motivated by these results and by an analysis of
typical occlusion causes we proposed a new combination of detectors that takes
the occlusion of cars by other cars into account. In a pre-study we successfully
showed the benefit of this approach on segmented car views. The next step is to
exploit the same principle also in full-scene detection.
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Fig. 5: Comparison of CCom with CStd and COcc. (a) CStd shows a good perfor-
mance for the foreground segments F while the result for the occluded cars B is
significantly weaker. On the combined data set F ∪B, CCom is in general much
better than CStd. (b) COcc performs very good on B but has strong problems
on the unfamiliar occluders F . CCom also clearly outperforms COcc on F ∪B.
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