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Preface

Hier kommt das Vorwort hin



Chapter 1

Electromagnetic Field

1.1 Maxwell's Equations

Electric and magnetic fields that vary with time are goverhgdghysical laws
described by a set of equations known collectivily as MaXs/etjuations. James
Clerk Maxwell (1831-1879) gave the first formulation of teegjuations in his fa-
mous booKTreatise of Electricity and Magnetism 1864, in which he proposed
the existence of electromagnetic waves. The first expetiatiererification of
their existence was done by Heinrich Hertz (1857-1894) 1iB88&fe "Technische
Hochschule” Karlsruhe.

To describe the physical phenomena one defines differendrvéelds that
vary with the three spatial coordinates x,y,z and with timé\te start with the
introduction of the

oL M

= E(xy,zt) — electric field,
B(x,y,zt) — magnetic flux density.

The electric fieldE and the magnetic flux densif are regarded as fundamental
in that they give the force on a chargenoving with a velocity.

F = q(E +VxB)
This force is called the Lorentz force.

In addition to theE andB fields, it is convinient to introduce auxiliary fields:

D = D(xy,zt) — electric displacement density
H H(x,y,zt) — magnetic field
J = JX(xy,zt) — conduction current density
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In the case of fields in free space or in vacuum we have verylsingtations
between this fields.

5 Eoé
— i—»
H UOB
with
g0 = 8,854 10—1266‘%1 — permitivity of vacuum
o = 41'[-10*7X—r% — permeability of vacuum

Since no charges exist in free space the conduction cureersity fieldJ; is not
existing.

Faraday’s law

One of the basic laws of electromagnetic phenomena is Fasatiav, which
states that a time varying magnetic fifldjenerates a electric field.

%E-d§: —3/|§.dﬁ (1.1)
c ot /a

To explain equation 1.1 see Figure 1.1. According to Faradaw the time rate

_>
B

Figure 1.1: Generation of a electric field by a time varyinggmetic field

of change of total magnetic flux is equal to the negative vafitbe total voltage
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measured around the contdCir It is important to notice that the negative sign is
only true if the direction of the magnetic field and the or&iun of the contour
is right handed as shown in the figure 1.1. With the help of Swkheorem,
which states that the integral of a vector field around a dasstour is equal to
the integral of the normal component of the curl of this veaeer any surface
havingC as its boundary we have

?{E.d§: /(ﬁxé).d/i — —ﬂ/é.dﬁ
C A ot Ja
hence we find as differential form of Faraday'’s law.

0B

OXE = —— 1.2
X p (1.2)

Ampere’s law

It formulates how a electric current will built up a magndied. A simple ex-
ample of this is, how a straight wire carrying the total catreis accompanied
by concentric magnetic field lines as shown in Figure 1.3 Adicg to the law of

Figure 1.2: Magnetic field due to the current | of a wire

Oerstedt we have for any simple closed contour surroundi@gvire

fﬁdé:l
C
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It was Maxwell who noticed that not only the conduction catréensityJ; pro-
duces a magnetic field but also the so called displacemergrdulensityd, =
dD /ot has to be considered. So he gave a new formulation of ampave’s

fﬁ.dng(a—DH;).dA (1.3)
A Ot
Again with the help of Stoke’s law we find
fﬁ.dgz /(*xﬁ)d/&
A
the differential form of ampere’s law:

OxH = = +417J (1.4)

Figure 1.3: Magnetic field due to conduction and displacdroerient density

Gauss’s law

To deduce Gauss’s law we will start from equation 1.3 andyappn a close
surface. Since a close surface has no bondary the right id@nafsequation 1.3
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will vansih and we find 5
o | BaA — [ G
6t/A A

or integration with respect to time yields
/5d5\:/dt/jcdﬁ\
A A

The left handside of the last equation is of course equal éadkal of charges
brought into the volume by the flewing currents. Hence we have

j[ 5.d& = Q
A
To clearify the meaning of this law consider Figure 1.4. bhwh an arbitrary vol-

}

D

X
-
/////

Figure 1.4: Volume with a given charge dengty

ume bounded by its surfage Inside this surface we have an charge distribution
described by the function of charge density per unit volygm&auss’s law now
states that the total electric flux out of the volumas equal to the net charge

contained withirV.
]{ 5.dA = / odV
A v

The last equation my be converted to a differential form bipgishe divergence
theorem from Gauss.
%5@& — /(D.f))dv
A Y
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Hence the differential form of Gauss’s law reads
0D =p (1.5)

In contrast to the electric field there exist not magnetiagks, so we have in this
case .
0-B=0 (1.6)

In summary the electromagnetic phenomena is describedebfpliowing set of
four equations, known as Maxwell’s equations.

O « E _0B

UxE = aﬁt

— — D —

|_])><_)H W—'—J (1.7)
g-b = p

0-B 0

Phasor representation

Usually we consider only steady state solutions of elecigmetic fields as pro-
duced by currents having sinusoidal time dependence. e dependence of
all fields can then be expressed by for example by the reabp#re exponential

function.

E(7,t) = E(7)cowt+¢) = Re{E(F)exp(jd)exp(jut)}
Thus we are ready to define the phasor of a electric field.
E(F) = E(F)exp(j9)

Using the phasor representation the derivation with resjeettme 0/0t may be
replaced by a multiplication withw. Hence we get for Maxwell’s equation for
fields with only sinusoidal time dependence in phasor naati

OxE = —jwB

OxH = joD4+J

IxH o= jeD+J (1.8)
0o-b = P

0-B 0

1.2 Constitutive relations

In material media the auxiliary fields are defined in termsefyiolarization of the
material and the fundamental field quantities. The reldtiemveen for examplB
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andE are known as constitutive relations and must be known béfaraolution
for Maxwell’s equationsl1.7 can be found.

We will first consider the electric case. Figut@a shows an undistored atom
possessing rotational symmetry. If an electric figli$ applied to a material bodly,
this force results in a distortion of the atoms or molecukeshkaown in Figure 1.5b
in such a manner as to create effective electric dipolesauitipole momen per
unit volume. With the help of the dipole moment per unit vokume define the

\ 4
Figure 1.5: Induced dipol by an electric field

displacement density vectbrby:
D = 80E + P

For a great many materials the polarizatiis in the same direction as the applied
electric fieldE and will be proportional to its absolute value. Thus we cavrite
the above equation in the following form

D = EoE + XeE = Sosré

wherexe is a constant of the material and is called electric suse#iptiand &, is
the relative permittivity of the media. But if we considensgsoidal time varing
fields only for low frequencies the motion of the atoms or males will be strict
in phase with the applied electric field. For higher frequesthere will be a
phase deviation between the electric field and the polasizaind this will result
in a complex relative permittivity connecting the phasdrthe fields

D =eogE = ¢E = (¢~ j¢")E

A complex permittivitye will allways occur whenever damping effects are present.
Loss in a dielectric material may also occur because of &fauhductivityo. The

two mechanisems are indistinguishable as far as exteriegtgefelated to power
dissipation are conserned. For example the curl equatiod foay be written as

ﬁxﬂ: jwe£+0E
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with J = oE beeing the conduction current density in the material. ideme can
rewrite the above equation as

Oxf = jole— (e + )
With the help of the last equation we find for the loss tangdn alielectric

medium Y .
we' +0 € o

tan(d) = e e + o
Any measurement of t&d, ) always includes the effects of finite conductivay
and damping effects”. At microwave frequencies howevef is usually much
larger thano /we’ because of the high frequencies. Materials for wiitdis lin-
early related t& and in the same direction &sare called linear isotropic mate-
rials.

If we consider crystals, these structures lack sphericainsgtry. Then the
polarization per unit volume will depend on the directiortloé applied field. In
the generale case were the orientation of the crystal streiblas a different orien-
tation with respect to the used coordinate system one get®llowing equation
between the fieldD andE.

. Dy Exx Exy Exz Ex
D - Dy - §yx §yy gyz . E
D, E2x &7y &z E

For anisotropic media the permittivity is denoted tensanptivity.

In the case of the magnetic field in a isotropic linear makeveacan write an
analog equation like in the case of the electric field.

B = wo(1+xmH

were = HUp(1+ xm) is called the permeability of the media. As in the electric
case, dissipation will caugeto be a complex frequency dependent parameter
with a negative imaginary part.

Also, there are magnetic materials that are isotropic, irtiqdar, ferrites
are anisotropic magnetic materials of great importancei@omave frequencies.
These exhibit a tensor permeability of the following form

b 2 O
MW= -k ma O
0 0 M

when a static magnetic field is applied along the axis for Whiee permeability
IS 3.



1.3 Static fields

Static fields are defined by the fact that there are no vansiio time, hence all
derivatives with respect to time vanish and Maxwell's etureg 1.7 reduce to

OxE 0
OxH = (1.9)
-D = p
0-B 0

1.3.1 Electrostatics

We will start the discussion of these equation with the eledteld. Since the
static electric field has zero curl the line integralbiround an arbitrary closed
contour is zero. One calls such a field a conservative fiel&kvban always be
expressed by the gradient of a scalar function, known asipatéunctiong, since
we havell x (Clg) = 0. Thus we can express the electric field by the following
equation:

E = —0o
With the help of the divergence of the electric displacendemsity fieldD and in
the case of spatial constant permittivétyve find

- — — —

0.D=0-(¢E) = —e0-(Jg) = p
This results in Poisson’s equation
[2 = —g (1.10)

If there exits no charge density distribution, this equatieduces to Laplace’s
equation
B9 = 0 (1.11)

The basic problem of electro static fields is to slove PiossonLaplace’s equa-
tion for a potential functioryp satisfying appropriate boundary conditions to be
discussed later. To get familiare with Piosson’s equatienwill study the one
dimensionale pn-junction as an example.

Example: pn-junction

Figure 1.6a shows a pn-junction where the p and n regionseageémiconductor
a seperated by an imaginary sheet. In Figure 1.6b this slasebéren removed.
Now the free electrons in the n region will recombinate whie free holes of
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Figure 1.6: pn-junction

the p region, resulting in a space charge distribution agvsho Figure 1.7.Np
andNp beeing the donator respectivly acceptor concentratiottssofloped semi-
conductor whilew, andw, are the widths of the depletion zones in the p and n

P(X)

el

eNa

Figure 1.7: charge distribution of a pn-junction

regions. Since the whole semiconductor is neutral, we Heae/éotiowing equation
connecting the concentrations of the doping and the depletidth.

ND Wn - NAWp

To find the electric field distribution and potential functizve use the one dimen-
sional divergence equation of the electric displacememnsitiefrom 1.9.

dE(x)
ax

dE(x)
dx

—ENa for —wp<x<0

ENp  for O<x<wy
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Integration yields the following equations for the elecfield distribution

E(x) = —%(Xerp) for —wp<x<0

E(x) = —#(wn—x) for 0 <Xx<wh

A second intgeration yields for the potential function

o(x) = %(xthp)2 for —wp<x<0
o(x) = %(Wn(prer)—xz) for 0<x<w

Figure 1.8 shows the calcualted electric field and potefiiattion of a pn junc-
tion.

E(x
—|Wp Wn

Up

X

Figure 1.8: Electric field and potential function of a pngtion

1.3.2 Magnetostatics

SinceB always has zero divergence, it may be derived from the cual wéctor
potential, normally denoted 4.

B=0xA

As a consequence, this makes the divergend® wénish identically. With the
curls of the magnetic fieltl andp beeing spatial constant we find

=

OxuA) = OxB = Ox (OxA) = W
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To go one with our considerations we have to use the followdegtity
Ox (OxA) = 0(0-A) — O%A

Since theB field defines onyl the curls of its divergence may be set to zero
without affecting its curls and hence the equation redutes t

A = —pJ (1.12)

If the problem can be described by cartessian coordinagdssihequation can be
rewriten in three not coupled equations for all three catatés.

2 = —ulk
(2A, = - (1.13)
[PA;, = —uk

Comparing Piossion’s eqution of the electrostatic fielddlwith equation 1.13
clearly shows that electrostatic field problems are easiesotve compared to
magnetostatic field problems.

Example

1.4 Wave equation

To gone on in our study of Maxwell’'s equations we will first saater them in free
spaces, this means that there are no charge distribyien® and no conduction
currents] = 0. On the other hand we will start with arbitrary time deperme
This means we study the possible solutions in the time domain

1.4.1 Time domain

Under the discussed circumstances the curl equationse¢dtite following form

L. 0B .~ D
DXE__E DXH—E

We will consider only spatial constant linear lossles ispit materials, so that
the following constitutive relations hold true

D=-¢gE=¢E B=puH =pH
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To find a differential equation we first consider the curlsha first curl equation
e o0 x B o0 x H
Ox(OxE) = — = —

< (HxE) ot W5t

With the known result of a double curl of a vector field and tk&lof the second
curl equation we find

O(0-E) — O?E = —pe—

Since there are no free charges we hav€ = 0 and the first term vanihes. As a
result we obtain the so called wave equation.

=29 = azé

0%E — pe—s

e

To find a solution for equation 1.14 we first will consider thpesial case that

only a x-component of the electric field exists which has anlariation in the
z-direction.

=0 (1.14)

In this special case equation 1.14 reduces to
0%Ex plaaZEX
07 at2

Following d’Alembert we consider an arbitrary functi&(z t) of the following
form

=0 (1.15)

Ex(zt) = Eof(zwt) = Eof(y)

that means, the field distribution is define by an arbitranction f(y) with the
only restriction that its argument has a spezial dependendke spatial coordi-
natez and on the time coordinatewith y = z 4+ vt. For the derivate with respect
to zandt we get

0’Ex _ anz_f PEx Eovzazf
07 oy? ot? oy?

Introducing the above result in equation 1.15 we get

02

(1—pev?)Eg ayz
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We have a non trivial solution only in the case were the bratden vanihes.

Hence we find 1

v v (1.16)
To discuss the physical meaning of the found solution we laeon Figure 1.9.
It shows an arbitrary field distributidf,(z t) at the timet = 0. If we for example
consider the specail poia(0,0) = Ex(y = 0) than this point will move in the
posistiv or negative z-direction, depending on the sign of

A Ex(z)

vt

— Ny ’Z

Figure 1.9: Propagation of a wave

O=z+vt — zZ= Fvt

So we found that a function of the forfi{z — vt) describes a wave with arbitrary
form moving in the positive z-direction, whereas a functidnhe form f (z + vt)
descirbes the same have moving in the negative z-diredfiare consider a wave
in free space we hayg = 1, = 1 and equation 1.16 reduces to

1
Ho€o

Equation 1.17 was a create theroretical success of Maxatie#orie since it shows
that electromagnetic waves propagate with the speed dfdygind its value could
be evaluated from fundamental quantities measurable iel&otrostatic and mag-
netostatic fields. In 1986 the value of the speed of light @& fspace as funda-
mental constant was defined to e = 2,99792458 10°m/s by the Task Group
on Fundamental Constants, a committee of the Internat@oancil of Scientific
Unions. For the most cases in the domain of microwaves andsope have
I = 1, so the velocity of electromagnetic waves in media can be evaluated by

c= 0 _% n = /& refractive index of the media (1.18)

V& N

V=C = (1.17)
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Energy and pointing vector in time domain

To study the behaviour of the electromagnetic field in a ganierm we will
examine the divergence of the cross prodtistH. With the help of the following
identity

0.-(ExH) = (OxE)-H— (OxH)-E
With the help of Maxwell’'s equations 1.7 the right terms of thst equation may

be rewriten as ~ ~
0B . - 0D =

_——~.H- ~\.E
ot ( ot )
Finaly we find for the divergence of the cross prodtct H

~0-(ExH) = J- E+%(1B H) +%<1D E) (1.19)

To go on in the discussion of equation 1.19 it is nessary tentity the physical
meaning of the right terms. These are

J-E - dissipation energy density
1/2B-H - energy density of the magnetic fielg
1/2D-E - energy density of the electric fiele

If we introduce the vectoS = E x H than equation 1.19 definece the divergence
of this vector. To come to a physical interpretation we wil @n integration
over an arbitrary volume that is bounded by a surfAceWith the help of the
divergence theorem of Gauss the volume integration ov&rcan be transformed

in an integration over the bounding surface and we get

—fé-d,&:/j-édv+ 2/wmdvjugfwedv
A V ot Jv ot Jv

Rearranging the last equation we find

—% We + Win) jq{s dA + /J Edv (1.20)

with Wy, andWe beeing the total magnetic respectively electric field eieestpred
in the considered Volume.

\% \%

Considering Figure 1.4.1 equation 1.4.1 states that the tiependent decrease
of electric as well as magnetic energie is equal to the tatadgo dissipated in the
volume and a power defined by the veckieaving the volume. The vect&is
denoted as Pointing vector, it descirbes the time depempentr that leaves the
volume as radiation.
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Figure 1.10: Volume of integration to define the pointingteec

1.4.2 Frequency domain

In this section we will consider sinusoidal time dependemhaéhis case the fields
are discribed by phasors defined in 1.1. The differentiatvdh respect to time
in this case is replaced by a multiplication wiftb. So the wave equation 1.14
becomes .

%E + w’peE = 0 (1.21)

or if we again restrict the electric field to be of the simplenficE = Ey(2)&,
equation 1.21 reduces to

dEx(Z> wz

— E, =0

dZ + US—X
Thatis a second order homogenous linear differential éguatith constant coef-
ficient. It is well known that this differential equation islged by the exponential
funktion
E.(z) = Egexp(—jkz) with k = w,/pe (1.22)

The introduced constaktis called the wave number. To get a physical interpreta-
tion of equation 1.25 we have to convert the phasor repragentto really fields.
This is done by multiplying equatio®? with exp(jwt) and considering only the
real part.

Ex(z,t) = Re{E,(z)exp(jut)} = Egcogwt —k2)

In the last equation we consider the constggto be real. Figure 1.11 shows the
field distribution of the electric field along the z-coordimatt = O and after a
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Ex(z 1)
ExO

-1 -0.6 -0.2 0.2 06 —z 1
A
Figure 1.11: Electric field distribution

time intervallAt. In contrast to Figure 1.9 the electric field extens fam —o

to z — c. That accounts for the fact, that in the sinusoidal case dheces are
supposed to radiate sinte— —o. From Figure 1.11 it is also clear that the
function exg— jkz) describes a wave moving in the posistive z-direction. If we
investigate the the total phase of the cosine functica wt — kz and if we for
example examine a point with constant phése0, we find for the phase velocity

W
0=w—-kz — Z:Et:ct

From the above equation we deduce that a point of constasepsanoving with

c the velocity of light. Another important constant of a wavighwsinusiodal time
dependence is the wavelengththat for example the distance between to hills of
the wave. With the help of Figure 1.11 we find

=< (1.23)

Energy and pointing vector in frequeny domain

Hier soll noch was hin, siehe Olver
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1.5 Boundary conditions

In order to find proper and unique solutions to Maxwell’s ggprafor situations
of pratical interest a knowledge of the behavior of the eleend magnetic field
at boundaries separating differnent material bodies igired.

The integral formulation of Maxwell’s equation provide thmst convenient
formulation in order to deduce the required boundary coont Consider two
media with parameteisy, 3 andey, P form a boundary as shown in Figure 1.12.
To deduce boundary conditions for the electrical field wd fisider a small

Figure 1.12: Boundary between two different media

cylinder of heighth — 0, if we now apply Gauss’s law we find in the case of
vansihing surface charges.

lim ¢ D-dA = 0
h—0.JC

As the height of the cylinder tends to zero only the top anddnosurface of the
cylinder will contribut to the integral and we find

51~A5\1+ D’z-A:&z =0

If we now remember that the top and the botton surface haveaime valué\A,
but their normal unit vectors have opposite direcégr- —vecy = vecy, we find

D, 80A — Dy -8AA — D;-& = D8,

The last equation states that the normal conponent of tlorielelisplacement
density has to be continous at a boundary interface. A simekult clearly holds
true for the magnetic flux density.

jq{ﬁ-d,& -0 — Bi-8&=B8&
C

To obtain boundary conditions on the tangential compongfrite electric fieldE
and the magnetic field the circulation integrals as shown in Figure 1.13 are used.
To deduce the condition we define a tangent unit vegtbying in the boundary

18



Figure 1.13: Boundary between two different media

plane as well as in the plane of the circulation integral. iAg# suppose that the
heighth of the last plane tends to zero and so does the magnetic fla® ive find

Iim%ﬁ'd§z B, A8 + B, A% = 0
h—0.JC

If we take into consideration the different orientationglué wayelementAs; =
—AS; = Asg we get

E, - 8As — E,-8As=0 — E;- & =E»-&

The last equations states that the tangential componethe @lectric field have
to be continous at a boundary interface. The same result @édirihe tangential
magnetic field from its circulation integral.

Hm()fﬁ-dgzo , HAa-Hg

The boundary conditions at a conducting surface will bewdised in the next
section.

1.6 Plane wave

We will now go on to discuss one solution of Maxwell’s equattbe plane wave
allready started in 1.4 in a more generall form. In the timefanic case the wave
equation 1.21 reads

[PE + KE = 0 with k = w/JE
Hence the electric field is a solution of the Helmholtz equatiThis vector equa-
tion holds true for each component and in a cartesian coatelsystem we get

D2E((xY,2) + KEx(xY,2)=0
|_jZEy(X? y? Z) + kZEy(X7 y? Z) = O
|_j2EZ<X7 y? Z) + kZEZ(Xv y7 Z) =0

19



That are three partial differential equations for the thwaknown functionE,,
Ey andE,. A standard procedure for solving a partiall differentiglation is the
method ofseparation of variablesHowever, this method does not work for all
types of partial differential equations in all various cdioate systems. But in
our case it will work. The basic method is to express the unknfunctions by
a product of funktions depending only on one variable. Weé eigcuss this in
detial for the functiorg,

Ex(xy,2) = X(X)Y(y)Z(2)
Substituting this expression intio the wave equation @eld

2 2 2
T2z +x3%z + x¥TZ 1iexyz - 0
X ay? 07

Dividing the last equation by the total functidy gives

10X 1Y 102 ,
> + + +
X(x) ox* ~ Y(y)oy*  Z(2) o7

Each of the first three terms is a function of only one singteependent variable
and hence the sum of these terms can equal a consténonly if and only if
each term is equal to a constant. Thus the partial diffexbatjuation of three
unknown funktions is separated in three ordinary diffeéedreéquations of only
one unknown function each

=0

-
o

o
X

q4A —K2
X(x) 32% X
1. 4dY 2
Yo7 Ky (1.24)
1 dZ e
Z(2) d7 z

with the so called separation condition
K+ K2+ K = K

The differential equations of 1.24 may all be solved by thgogential function,
so we find the following solution for unknown fiel, (x, y, z)

Ex(x¥,2) = Expexp(— jkxX) exp(— jkyy) exp(— jkz2)
If we introduce a wave vectdrby
Kk = ke + kB + k&,

20



and if we introduce the vecta@rto the position of an arbitrary point in space

T = x& + VY8 + Z&

we can rewrite the equation for the field component funckgmn the following
form .
Ex(ﬁ = Exoexp(—ik'f)

Similar solutions may be found for the field componegfsandE,

Ey() = Eyexp(—jk:7)
EF) = Egexp—jk1)

In a full vector formulation the found solution for the Helolh equation for a
space described by the parameieende reads

E(F) = Eoexp(—jk-T) (1.25)
In generall the constant vectiy may be a complex vector, to simplify the follow-
ing considerations we will suppose that it is real. Since vdendt consider any
charge density in that space the above field has to fullfiltikiergence condition

=

0-E(T) = 0 or with the help of equation 1.25 we find
[- [Eoexp(—jk-T)] = Eo-[J-exp(—jk-F)] = —jk-Epexp(—jk-F) = 0
Hence we have .
k-Eg =0 (1.26)

that means the constant vectay has to be perpendicular to the wave vedtor
A solution for the magnetic field can be found by using the eguiation of the
electric filed from 1.8, which leads to

|t

1 = — 4 1 — - —
= ———[Ox[Egexp(—jk-T)] = —FEg x [O-exp(—jk-T)] =
T [Eoexp(—jk-T)] T [0 exp(—jk-T)]

1- - -
w_ukx Eoexp(—jk-T)

If we introduce a unit vectogy in the direction the wave is propagting we have
k = k&, and find as final equation for the magnetic field

_ k o 5
H = —8yxEgexp(—jk-T 1.27
o oexp(—jk-T) (1.27)
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It is interesting to examine the inverse of first term in moetad. With equation
1.21 we defined to be equal taw, /€. Hence we get

O /Ko
k € €o

One ususally defines the so called intrinsic impedafyoef free space with

Zo = \/E ~ 377Q (1.28)
€0

With the help of this constant one defines the field impedarepdéne wave in a
space defined by the ande; by:

The inverse of this value is called field admittarvee= 1/Z¢. Thus the equation
for the megnatic filed reads

A= 2 axEM (1.29)
A

Note thatH is perpendicular to the electric fieftland the dircetion of wave propa-
gationg,. Hence both the electric field and the magnetic field lie instant phase
planes. For this reason this type of wave is callddaasvereselectranagnetic
wave (TEM-wave).

Real electric field

To obtain the real electric field corresponding to the phasprestentation of
equation 1.25 we have to do the following operation

E(F,t) = Re[Egexp(—jk-F)exp(juwt)] = EocogkF — ut)

The wavelength again is the distance the wave must travehdergo a phase
change of 2L Thus we find

kKA =2n — )\:%

with ¢ beeing the speed of light in a media.

Co
VHr€Er

C =
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Phase velocity

The phase velocity is the velocity with which an abserver idwave to move in
order to see a constant phase of the wave. For the phase tostacbwe have

K-T — ot = const

If we introducef as an angle between the direction of wave propagﬁtimd?(t)
the direction of movement we have

kr(t) cog0) — wt = const

Differentiation of the last equation with respect to timelgs for the phase veloc-

ity Ve
dr () c
= — = prm— 1.
YPh =t kcogB)  co90) (1.30)
Itis intereseting to notice that only in the direction of weguopagationd = 0) we
have a phase velocity which is equal to the speed of lightrball bther directions

the phase velocity is greater.

Power density

To calculate the power density that is transported by a plawe we evaluate the
time averaged pointing vector
1 %

<S>= ERe[E x H'] (1.31)

With the help of equation 1.29 we find

p=4 1 = =% 1 = =k =% =
= —— RelE E)] = —R E-E)-—E (E-
<S> 27 elE x (ByxE )] 57, e@vE-E ) —E (E-&y)]
Since the last term vanishes we get for the power densitgp@ied by a plane

wave
1

27
Of course the power density is transported in the directfomave propagation.

<S> IE|%8y (1.32)

1.6.1 Reflection from a dielectric interface

In Figure 1.14 the half space> 0 is filled with a dielectric media with total
permitivity 2. A plane wave is assumed to incident from the regierD. Without
loss of generality the xy-plane is orientated so that thé wegtorg spezifying
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Figure 1.14: Reflection from a dieletric boundary

the direction of the incident wave lies in the xy-plane. Titsrdirection can be
defined with the help of the unit vectogg, & and the angl®; defined in Figure
1.14.

& = &sin(6;) + &co96;)

Parallel polarization

We first will consider the case were the electric field vectdying coplanar with
& in the xz-plane. With the help of the propagation vector &f pkane wave, ist
wave vectolk; is given by.

AL

21
ki =58 = 5 Ve e

So the electric and magnetic fields of the incident wave aserd®sed by the fol-
lowing equation

Ei(r) = Eoexp(—jk-F)  Hi(f) = Yr18 xE;(7)

Part of the incident power will be reflected and the remeind#ibe transmitted
in to the dielectric media. To describe the direction of tbiéected wave we use
the unit vectog which is defined with the help & shown in Figure 1.14.

& = &sin(6;) — &.cog6r)

The electric field as well as the magnetic field are to definéogrta the incident
wave, .
E,(7) = Eoexp(—jk ) H/(F) = Ye18& xE,(7)
with
z 21

21
ke =58 =5 Vae
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In the dielectric media 2 the solution for the plane wave é&sgtame as in medium

1 but witheq replaced bye,. To define the direction of propagation in Figuré4.

a third angled; was defined. So we get for the propagation vector and the fields
of the transmitted wave.

g = éxsin(et) + ézCOieO

E/(F) = Ewexp—jk-T)  H(F) = Ye28& x E((F)

At the moment the two amplituddsg, E;p and the angle of refelctiof, and
transmissior®; are unknown. To solve for this values he have to apply the houn
ary condistions already discussed. That means the taayeathponents of the
electric and magnetic fields have to be continous at thefader = 0. Of course
these components have to be continous for all values of x aindtlyis plane.
This is only possible if the fields on adjacent sides of thendawy have the same
variation with x and y. Hence we must have

kiex = krex = ke
The first part leads to the following conglution

21 . 21 .
N sin(6;) = )\—15|n(9r) — 6 =6
This is the well known law of reflection allready known fronaping pool billiard.
In the second case we have to fullfill the following equation
21 . 21 .
)\—lsm(ei) = )\_2$|n(et)
With the help of the refraction coefficients = /€1 andny = /¢, the last equa-
tion may be rewritten as

2—nnlsin(ei) = 2—nnzsin(et)
Ao Ao

This leads directly to Snell's law of refraction

sin(G) m
sn@) (1.33)

Example for total reflection

To go on in our discusion we have to consider the field compisnienthe
interface. In the following considerations we will uBe= 6; = 6, and6, = 6.
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For the electric field x-components of the incident, the octééld and transmitted
wave we find

Ex = Ejpcog0)

Ex = EroCOiel)

Eix = EtoCOiez)

Imposing the boundary condition of continuity to the x coment atz= 0 yileds
the following relation

(Eio + Ero)cog01) = Erocog82)

Which can be brought to the following form with the help of $sdaw 1.33

(Eio + Ero)cog01) = Eto\/TnZ(GZ) = EtO\/l_ 2—;sin2(61)

Of course the magnetic field has only y-components and headad for

|'|iy = Yr1Ejpo Hry = —Yr2Er0 th = Yr2Ew0

Thus the continuity of the tangential magnetic field impa$esfollowing equa-
tion.

Ye1(Eio — Ero) = Yr2Ewo

If we define a reflection coefficient by= E;o/Eijo and a transmission coeffcient
byt = Eio/Eio the two boundary conditions result in the following two etioias

(14r)cogB1) = t\/1—Lsin(6y)
n(l—r) = npt

If we solve this equations for the reflection and transmissmefficient we find

\/(%)2 — sin(6y) + (%)2005(91>
2 (R—i)zcos(el)

\/<R—i>2 — sinf(81) + <R—§>2C05(61>

(1.35)
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Figure 1.15: Reflection from a dieletric boundary

Perpendicular polarization

In contrast to the first case of parallel polariziazed eiledild we will discuss the
case of perpendicular polarization not in detail. FigurEslshows the consider
configuration. As shown in this figure now the electric fieldtes is perpendic-
ular to plane of incident. This leads to different equatitm&ullfill the boundary
conditions. As a consequence the equations for the reffeetiol transmission
coefficient differ from the parallel case.

cog61) — \/(@)2 _ sird(8y)
— N1
r = > (1.36)
\/ (:—i) — SirP(6y) + cog6y)
2c0g0;)

t = (1.37)

2
\/<:—i) — sir?(01) + cog 81

Example for reflections Brewster angle

1.6.2 Reflection from a conducting plane

To study the reflection from a conducting plane we considgutéi 1.17. The half
spacez > 0 is filled with a conducting material with conductanzeA plane wave
with the electric field vector polarized in the x-directianimcident perpendicular
on that plane coming from — —c. Of course a reflected wave will emerge
from the plane and propagate in the negative z-directiomvelfagain define the
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Figure 1.16: Reflection coefficient as function of angle cidient

Figure 1.17: Reflection from a conducting plane

reflection coefficient as the ratio of reflected to incidenidfiemplitude of the
electric field, we have the following fields in the half space 0.

= Eiogexp(— jkoz)

= YoEio& exp(— jkoz)
= r Ejp&cexp(jkoz)

= —I'YoEio8 exp(—jkoz)

In the time harmonic case we found for the complex permytivit

.0
e=¢e—j
w

—~
N

[T I [T T
RN

—
N

in the case of high conductivity this equation reduces to
e i o
€= -] o
and hence the wave equation in the conducting material begsom
[’E — —jwuoE = 0 (1.38)
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Equation 1.38 has the form of a diffusion equation known fitben flow of heat
in a thermal conductor. In our case we will only consider ateie field in x-
direction with a z-dependence, hence equation 1.38 reda@sordinary differ-
ential equation ,

d“E;(z .

?() — JwHoE(2) = 0
It is well known that this differentail equation is solved the exponential func-
tion, so we find as solution

E(2) = EBcexp—y2) with y = \/jouo

If we take the square root gfwe can break in its real () and imaginary§) part

y = (1+ )/

If we are only interested in the absolute value of the trattechielectric field we
find the following functional dependence

Et(2)] = |Eqolexp(—a2)

From the last equation we see that the transmitted field deegyonentially in
the conducting material. One defines a so called skin d&p#s that distance
from the surface, were the absolute value of the electrid feehlready reduced
by a factor Ye. This leads to the following equation fég

2
%= o (1.39)

Example: Skin depth for cooper at f = 100MHz
As conductivity for cooper we hav@:y = 6- 107%1 and as permeabillity we have
to uspp Thus we get for the skin depth

2

Os = \/ m =~ 6,5um
° 2P 4n10 ' 610 H

To callculate the magnetic field we have to use the curl egudtr the electric

field of 1.8

— —

1 Y
t o H J oouo_to P(—Yy2)8 ( )

With the help of equation 1.40 we are able to define the fieldemiapce in a
conductorZ,,

|

= (14 )y ah = A+ )p
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Example: Field impedance of cooper at 100MHz

1+ ]

m

This is a very small value compared to the field impedanceariglvave in free
space.

Returning to the boundary value problem and imposing thenary condi-
tions of continuity of the tangential fields at the bounda#y0 gives the following
equations

(1+1) =t
(1—=1)Yo = Yt

Solving this equations for the reflection and transmissmeffecient yields

r — Zm_ZO
- Zm+ZO

(1.41)
L= z.1%

Since the absolute value 8§, is very small compared i, the intrinsic impedance
of free space, the reflection coefficianis almost equal te-1 and the transmis-
sion coefficient is very small. Almost all the incident povigtherefor reflected
from metallic boundary. For the electric field in the condudh dependence of
the magnetic fieldﬂyo on its surface we find

. [Hw
Ex(2) = (14 1)1/ 5 Hyo exp-y2)
In the limit 0 — o for a perfect conductor the electric field will vanish. This
results in the following boundary conditions on a surface @erfect conductor
with surface norma,

& xE =

&b _ (1.42)

[ENN )

s surface current

Muss noch etwas ausfuhrlicher
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Chapter 2

Transmission lines and waveguides

In this chapter we will deal with waves that are propagatilog@ three dimen-
sional structures. We will allways suppose that the cross®eof the structure
will not change in the z-direction, so that waves guided leydtnucture will prop-
agate for example in the positive z-direction. In this clkapte will not deal

Figure 2.1: Cross section of different wave guides
with reflected waves, because the electromagnetic fieldlaision of that waves
does’nt differ essentially in the considered cross sectidgure 2.1 shows some
examples for wave guides we will investigate in this chapter

2.1 Classification of wave solutions

Since no sources are considered the electric and magnddis &iee solutions of
the homogeneous Helmholtz equations

[(PE+KE =0 or D°H+KH =0 (2.1)
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In this chapter we will try to find solutions of the above edoias that describe
waves propagating in the positive z-direction of the stitet As we saw in the
preceding chapter in the time harmonic case wave propaygitithe positive z-
direction is describe by the function gxpjpz) with 3 beeing the phase propaga-
tion factor of the considered wave. To deal with arbitrayatiures in the xy-plane
we first rewrite the nabla operator in a first part working ia thansversal plane
and a second one working in the z-direction

- - 0
O=1040 —
t+ézaz

All fields considered in this chapter will have a z-depen@aescribe by exp- j3z).
So the differentiation with respect to z in above nabla ojpenaay be replaced
by a multiplication with—j3. Hence we find its new form

0=k +—jB&

We will also decompose the electric and the magnetic fielol antransversal and
an axial component.

E(vavt) = Et(x7y) eXF(—jBZ) + Ez(x7y) eXF(—jBZ)

H<X7 y7t> = Et (X7 y) eXp(—jBZ) + EZ<X7 y) eXF(_jBZ>
In the above equations the field distribution in the transaigplane is formulatted
for simplicity as dependence on the variabteandy, but other transversal coor-

dinate systems are also applyable. We will now rewrite thieemyuations of 1.8,
to see how they change under the considered circumstances

OxE = [0 — iB&) x [E¢(xy) + E,(x.y) exp(—B2) =

- J wp—[ﬂt (X7 y) + Ez<x7 y)] exp(— J BZ>

If we consider the different direction, we notice that th@wabequation may be
separated in two ones.

Ot x By (x,y) = —jopH,(x,y) (2.2)

& x UE,(x,Y) + |B& x E;(x,y) = jouH(x,y) (2.3)

In analog manner the curl equation of the amgnetic field ofmia§ be decom-
posed into the following equations

O x Hy(xy) = jweE,(x,Y) (2.4)
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& x OH,(xy) + jB& x Hy(xy) = —jweE(xy) (2.5)
If we examine examine the divergence equation of the magheld, we find

|_jt : Et (X7 y) = J Bﬂz(x7 y) (26)
and in the case of the electric field
|_jt . Et (X7 y) = J BEZ(Xv y) (27)

2.1.1 Transverse electromagnetic waves

In this subsection we will discuss the generall propertiesEM waves, waves
that have no field components in the direction of propagatitance

E,=0 H,=0

In this case the equations 2.2 to 2.7 reduce to

|_jt X Et(X,y> =0
Be; x E(xy) = wpH(xy)
Dt X Fit(X,y> =0

B ; 2.8
Be, x Fhixy) — -weEi(xy) &9
Qt Et(X7y> =0
Dt ﬂt(x7y) 0

As a consequence of equation 2.8a the curls of the tran$\atesdric field Et
vanishes, this means that it may deduced from a scalar jaitémction ¢(x,y)
defined in the transversal plane.

E(xy) = —Oo(xy) (2.9)
With the help of equation 2.8b we find for the transversal negigriield
Hy = Eézx B (X,Y) (2.10)
W
Using the divergence equation 2.8e we find for the potentiadtion

O-[Dex,y)] = D%p(x,y) = 0

From the last equation we see that the scalar potepitiay) has to fullfill Laplace’s
equation and the certain boundary conditions to be a apjtegunction.
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The electric field of the TEM-wave propagating along the trte is then
given by
Et(xvyvz) = _Dt(p(xvy) eXF(-jBZ) (211)

Of course also this field has to statisfy Helmholtz equatidn [2ading to
(D2 —PBAE, + KE, = 0
Using the potential function we can rewrite the above eguati
O | Co0ey) + (¢ — B2)exy)| = 0

Since the first term is zero the brackkt — %) must vanish, giving us the prop-
agation phase constgof TEM waves

szzw\/ﬁz%TT (2.12)
With the help of eqution 2.8b we find for the magnetic field oftaVl wave
ﬂt(xvyvz) = _éZXEt(X7y7Z) = _éZxEt(X7yvz> (213)
W Zr

Form this equation it can easily been recognized that thenetagfield is allways
perpenticular to the electric field and as in a plane wave thplitudes of the
electric and magnetic fields are connected by the real figiebdtanceZr.

Example: Lossless coaxial transmission line

Figure 2.2 shows the cross section of a coaxial transmidisienlt is reasonable
to use cylindrical coordinates to describe ist geometrytaridrmulate the bound-
ary problem. In this coordinate system the square of they¢rae nabla operator

is given by
., 14 [/ 0 1 0°
== (p— | +>—
pdp (pdp) p? 092
We will search for a potentail functiopthat is independent of thie-coordinate,
thus the above equation reducxes to

A0%) -

This equation can be easily integrated and gives as itstr@$iust constanC;

op(p)
op ©
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Figure 2.2: Cross section of a coaxial transmission line

A further integration yields the following equation for thetential function

®(p) = Ciin(p) + G2

The two constants of the last equation may be determined pgsing the bound-
ary conditions on the potential function. In generall théeowconductor of a
coaxial line is supposed to have the potendigk= 0, while a field between the
conductors may only exist if the inner conductor has a di#fet potential, say
@ = Up. So the potential function has to fullfill the following bodary condi-
tions

Pp=d/2) = Uy = Cin(d/2) +C;

op=D/2) = 0 = CiIn(D/2)+C,

Solving this two equations for to determine the two consyéglds the equation
for the potential function

B Uo D
W) = o™ (z)
Using equation 2.11 we find for the transversal electric fuélthe TEM wave
= d Uo D B Uo }
= 5 o " (3)] = mow s

And for the transverse magnetic field, we find

L1 U 1 Yo 1
o (o %) ~ b o®

So we found the equations describing the transversal elestd magnetic field
of the TEM wave propagating on a coaxial transmission line.
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2.1.2 TE waves

Transverse electric waves are waves that have no axialieletd component
E; =0 but an axial magnetic field componetit# 0. As we will see for TE waves
H; plays the role of a potential function from which allothetdieomponents may
be deduced. In this case the equations 2.2 to 2.7 reduce to

O x E(xy) = —jouH,
B?Z X Et <X7 y) = wth (X7 y)
Dt X Fit(X,y> =0

N R _ o 2.14
P& x Hi(xy) = —weE(xy)+ j&xU-H; (244
Qt %(X,Y) = 0
Dt ﬂt(wi JBﬂz

Using Helmholtz’s equation 2.1 and decomposing the opesatad fields in trans-
verse and axial components we have

(07 — B%)(Hy +Hy) + K*(H; + Hy) = 0
The last equation seperates in two independent ones

atﬂt + (kz—Bz)Ht = 0
Dtﬂz + (kZ_BZ)ﬂz =0

If we introduce a new constakf = (k? — 32?) we have to solve the following
partial differential equation to find a solution for the ftioo H,(X,y)

O?H,(xy) + keH,(x.y) = 0 (2.15)

To find an expresion folflt (x,y) we calcuate the curls of equation 2.14c and use
a known identity of vector analysis

Using equation 2.1.2a and equation 2.14f we are able totestine last one in the
following form
O(—jPH,) + kcH; = 0
and solve it to deduc, from the functiorH,
H ——ﬁiH(x ) (2.16)
-t — k(2: tHZ(X, Y .
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To find E, in terms ofH, we consider the following vector product
Be: x (&% E) = B|(& E)&—B(& &)E| = —BE,

With the help of equation 2.14b we find for the transversetetefield Et

E — —Faxfl - —Zeaxi,
If we introduceZgy the wave impedance of TE waves with
Zrn = Ezp (2.17)
we get the equation for the transverse electric field its fiorath
Ei(xy) = ~Zen[&x H(xy)] (2.18)

To find the TE waves of a given cross section one has to solvégedqi 15 under
appropriate boundary conditions and with the help of equatR.16 and 2.18 the
tranverse magnetic, respectivily the electric fields arendsable.

2.1.3 TM waves

The TM or E waves havel, = 0 but the axial electric field is not zero. These
modes may be considered the dual of the TE modes in that the ebthe electrci
and magnetic fields are interchanged. So in the followingsation we only will
give the results of considerations that are similair to ¢hgigen in the preceeding
subsection.

First we have to find a solution for the partial differntialuagion 2.19 of the
axial electric field componeri,(x,y) and to fullfill the boundary conditions.

D2E,(xy) + KEE,(xy) = 0 (2.19)

These will lead to the eigenvalues of the modes. Then thevease electric field
is given by

. B -
Ei(xy) = —QDthO@ y) (2.20)
The transverse magentic field is then given by the followingation
Hi(xy) = Yee[& x E¢(x,y)] (2.21)
where we have introduced the wave addmittance of TM wavesndiy
1 k
YFE - E - BYF (222)
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2.2 Rectangular waveguide

The rectangular waveguide with a cross section as illlesdrat Figure 2.3 is an
example of a waveguide that will not support TEM waves. Cqusaetly, it turns

Figure 2.3: Cross section of a rectangulare waveguide

out that unique voltage and current waves do not exist anchiadysis of the
waveguide properties has to be carried out as a field probéther then as a
distributed circuit problem. The types of waves that canuggsrted in a hollow
empty wave guide are the TE and TM modes discussed in theopiesection.

2.2.1 TE waves

For TE or H modes we havg; = 0 and all remaining field components can be
determined from the axial magnetic fieldh(x,y) which has to solve equtaion
2.15. Writen in a component notation this equations reads

aZHZ(Xv y) + 62HZ(X7 y)
0x? ay?

If we assumeH,(x,y) is writeable as a product of two independent funciam)
andY (y) we are able to rewrite the above equation in the followingior

+ kgHz(Xay) =0

1 9X(x) n 1 aY(y)
X(x) ox®  Y(y) oy
The first term is a function ot only, whereas the second term is a functiory of

only andkZ is a constant. Hence the above equation can hold foraaitly values
only if each term itself is constant. These leads to the séiparcondition

+k =0

kK2 =K +k (2.23)
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So we have to solve the following ordinary differential etjoias

d?X (x)
4%
TP Yy = o0

It is well known that these ordinary differntial equatioms aolved from functions
like sin(), cog), exp() or any linear combination of these functions. To further
specific the right function and the constants we have to denghe boundary
conditions that have to be imposedlidyx,y). From equation 2.16 we not that the
transverse magnetic field of a TE mode is given by the gradied. From 1.42
we known that no magnetic flux must enter the perfectly condgaevalls of the
rectangulare waveguide. Hence the approprated functidffe, y) has to fulffill
the following boundary conditions.

+keX(x) = 0

éx-lit(XZO,Y) =0 — 2Hix=0y)=0
éx.|:|t(x:a,y) =0 — ZH,(x=ay) =0
8 Hi(xy=0 =0 — FHzxy=0)=0
& -H(xy=b) =0 — %HZ(va: b) =

If we considerX(x) to be coskyx) then this function differentiated with respect to
x would become the function sin(kkx), which fullfills automatically the bound-
ary condition atx = 0. To fullfill the boundary condition ax = a we have to
assure it

sin(kka) = 0 which leads to kyx = o
The same considerations hold true for the functiqy). Thus we find for the
seperation constaky

mrt
ky = —
Y7 b
hence as appropriate solution for tHg’x,y) we have
NTX
Ha(xY) = Homcog ") cog "2 2.24)

In this equation the constaht, , is an arbitrary amplitude associated with the
mode TE m. As a result of the boundary conditions we find for the cortdtan

e(nm) = /(2 + (T2

a

The phase propagation constant of each mode is then given by

B(n,m) =\ k(z) - kg(nv m)
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For ko > ke(n,m), B(n,m) is real and the mode will propagate. In the opposite
casef3(n,m) will be imaginary and the mode will decay rapidly with thetdisce
from the point at which it is exited. For this reaskin, m) is termed cutoff wave
number. Directly connected with its value is the cutoff wangthAc(n,m)

21
Ac(n,m) =
M = nm
or in a slithly different form
Ae(nm) = — 22 (2.25)
ma
"+ (p°)?

The decay of a mode is not associated with energy loss, buthagacteristic
feature of these solutions. Such decaying or evansesceatgsnay be used to
represent local diffraction or fringing fields that existthe vicinity of coupling
probes or obstacles in a waveguide. The frequency sepgthrpropagation and
non-propagation bands is designated the cutoff frequég{cym)

1 I
b E11/H11 Hoz
a) r Eo1 ]
H2 4
0.6 i
O_4i__Ho§ ___//‘//{’_____oﬁly _____ r .
| H1o0 mode
|
0.2 [ | _
Hzg 'H2o Hio
0 | | |
0 0.5 1 1.5 A 2

a
Figure 2.4: Mode chart

Cc
)\C(nu m)

fe(n,m) = (2.26)
To calculate all field components of the TE modes we have teegsation 2.16
and 2.18. In generall a rectangular waveguide does als@supjd modes. Since
the calculations are very similare tal#i@ gives in summary all field components
of TE as well as TM modes, that may exist in a rectangulare guide.
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TE modes TM modes

H; COS(?) Coim%ly) exp(— jBnm2) 0
E; 0 sin( ") sin("5¥) exp(— j Bam2)
Ex Zit oy — ] ™ cog( ") sin( "EY) exp(— jBom2)
Ey ~Zu e — g sin( ") cog( "gY) exp(— o)

. . E
Hyx ] Eﬂg‘”“sm(%") cog"5”) exp(— jBnm2) _Zﬁn
Hy B cos ") sin("RY) exp(— Bur2) SE
ZH nm Ko 7,

Bnm
ZE nm Ban0
Kem V OB+ (B2
Brm \/ k(% - kg,nm
A 2ab
c,nm

Table 2.1: TE and TM field components of a rectangulare wadegu
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Power

To calculate the power that a single mode transports, we taevaluate the
pointing vector with the help of equation 1.31. In the cas&Bfimodes the elec-
tric field has only compoments in the transversal plane,enthié magnetic field
has components in all directions, hence we have to exame#tlowing cross
product .

ExH = (E&+E,8) x (Hi& + H;8 + H}&)

— %

ExA" = (EH; — EHLE — EH;8 + EJH;

Only the first term of the last equation will contribute to ay@o transport in z-
direction. To compute the total power we have to integratetédtm over the cross
section of the waveguide. So we find for the total poWer, transported by the
mode Tk m

Pam = 5/0 /0 Re(E,H; — E,H;)dxdy

1 ra rb 9 2
- 5/0 /O (IHy|? + |Hx/?)dxdy
As result of this integration one finds

YR ] e

1
Pam = EZFH (n,m)|Hnm

with &, beeing the so called Neumann factor which has the follownogpgrties

5 2 for n#0andm#0
M~ 11 for m=0

2.2.2 TEopmode

From Figure 2.4 it is clear that the TgEmode is forb < a/2 the mode with the
lowest cutoff frequency. It is the most commonly used moliat the reason, why
we examine this mode in more detail. Table 2.2 gives a summifaimportant
technical used wave guides. Instead of starting withHheomponent, we rewrite
the field components of the; o mode by starting with the electric field

E,(x,2) = EyoSin(Zx) exp(— jkz2)

H,(x,2) = _ZI:ZL_HEV(X’ 2) (2.28)
H,(x.2) = | §4E 0c08 Tx) exp(— k.2
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Designation| Frequency rangé Dimensions

in GHz in mmxmm
R32 2,60-3,95 | 72,14x34,04
R48 3,94-599 | 47,55«<22,15
R70 538-8,17 | 34,85<15,80
R100 8,20-12,5 | 22,86x10,16
R140 11,9-18,0 15,80x 7,90
R220 17,6 - 26,7 10,67x 4,32

Table 2.2: Important waveguides

) W A — 2.29
- (2.29)
-(55)
Zen = ZiFA (2.30)
_(2_a>2

Figure 2.5: Fielddistribution of thiel; o mode

Phase- and groupvelocicty

W
Veh = 1 = - (2.31)
z A A
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Attenuation

Jo= &xFx=0) =~ 32E s

Jor = —&xH(x=a) = Ja)‘zz Eyo8

Joo= ~8 x () = — 522 sin( e — | 292 E o cot Te,

Evo
Jou= & xH(x) = sm(g X)€& + JaZZ Eyocos(ax)
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Figure 2.7: Rectangular waveguide of lengih
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Figure 2.8: Attenuation of a R100 waveguide for differentalie

2.3 Circular waveguide

Figure 2.9 shows the cross section of a circulare wave guidelescribe its ge-
ometry cylindrical coordinates are most appropriate ferdahalysis to be carried
out. In the preceeding section we allready discussed thau iarbitrary hollow

cross section allways TE and TM modes will exist. To starceulation we first

have to study the nabla operator in a cylindrical coordisgtstem. Its transvers
components are given by

- 0 0
Oh = By + By
I PR v
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Figure 2.9: Cross section of a circulare waveguide

Form equation 2.1 we known that we have to consider the scfaiee nabla
operator. Compared to the cartessian case, in a cylindrcadinate system its
square is some what more complicated to calculate since asméolremeember
that the unit vectorg, and &; itself are depending of th¢-coordinate of the
system. If we rememeber this we get

. ? 0 0?

B =—+—+—>— 2.33

" op?  pdp T pZog? (2:33)

That means that the z component of the electric field has killftile following
differential equation

0°E, OE, 0°E,
2 + 2 2
op pop p“0P

The method of seperating the variables may here also beedppliend up with
ordinary differential equations. If we suppdsgto have the following form

E.(p,9) = Enf(p)g(d)

we insert this into the partial differential equation andidi it by the functions
itself we get

+E, = 0

1 [@%f(p) af(p) 1 0%9(¢) .o
[ ] a6) p2op? ¢ °

f(p) | ap*  pop
multiplication withp? yields

&[ﬁm>am>+&@:hip@m

9(0) 992

f(p) | op? pop
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The left hand side is a function @f only, whereas the right hand side depends
only on¢. Therefore this equation can hold for all values of the \@ésa only if
both sides are equal to a constant, sayHence we have

p? azf(P) af(p) 212 _ 2
f<p)[ R I
and
_iazg(q)) 2
9(0) a¢?

So we have to solve the following ordinary differential etjoias

2
105 - Z

2
9 | g0) - o
Of course of the circular structure the field inside the waneg must be periodic
in ¢ with period 2t Hence the general solution for the functigf$) would be
a weighted sum of cdad) and sirind), n beeing an integer. But since there is
essentialy no difference between the two function we onbosle the sin function.
The term with the cos-function would then belong to a dereggermode with
perpenddicular polarization. The differential equationthe functionf(p) has
also two independent solutions. The solutions are the béssetions of first
Jn(kep) and second kind(kep). Since the functiorY,, becomes infinite ap
approches zero, the only physically acceptable solutiomshee fessel functions
of first kind. So the generallel solution for a TM mode reads
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function values

|
o
)
T

Figure 2.10: Bessel functions of first kind
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function values

0.8

Figure 2.11: Bessel functions of second kind
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E,(p,9) = Ensin(ng)Jn(kep)

SinceE; must vanish ap = a, it is necessary to choogega in such a manner that
Jn(kea) = 0. If the m'th root of the equatiod,(x) = O is designategnm. the
allowed eigenvalues df. are

ke(n,m) = pr;m (2.34)

The propagation constafitn, m) of the TM n, m) mode is given by

B(n,m) = /K2 — (2om)2 (2.35)

Table 2.3 shows the field components and the modes of thdariecwaveguide.
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TE modes TM modes
H, In(P2) cog(np) exp(— jBnm2) 0
E, 0 Jn (P22 cos(n) exp(— jBam2)
Hp  —jlanfhoy (Pe) cosing) expl—jBurd) e
Ho B dn(Pe2) sin(ng) exp( B =
= Zu nmHg — j Prmm (P cog(ngp) exp(— j Brm2)
B ~Z o i i In(P2®) sin(ng) exp(— jBom2)
Z4t o B%zo
Ze om famz,
Bom 1@ — (Bm)2 k3 — (Pom)2
Acm o o

Table 2.3: Field components of circular waveguide modes

TE ™
n| Py P Pr3 n Pn2 Pn3
0|3,832|7,016| 10,174 0|2,405|5,520| 8,654
1]1,841|5,331| 8,536 1|3,832|7,016| 10,174
2|3,054|6,706| 9,970 2|5,135|8,417| 11,620

Table 2.4: Values ofy, n,
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2.4 Optical waveguides

2.4.1 Dielectric slab waveguide

One of the simplest dielectric waveguides is the symmelaiz waveguide shown
in Figure 2.12. It is formed by a dieletric sheet with refraetindexn; sur-

Figure 2.12: Cross section of a dielectric slab waveguide

rounded symmetrically by second dielectric having refvacindexn, < n;. We
will search for TE modes propagating in this waveguide. Sithe fields are sup-
posed to have no variations in the y-direction the transvebda operator reduces
to 5

P

A single wave is described by a propagation congbdot both regions. This will
lead to differenk; values depending on the region we will consider. In the regio
of refractive indexn; we assumd to be real and denote it bk,

— a —
o= 8o, — 0¢ =

d’H,(x)
R

in the region of refractive inder, we assumé to be imaginary and we denote
by ja:

+KH,(x) =0 for —d<x<d

d’H,(x)
42

The first differential equation is solved by a sin or cos-tiort
Hz(X) = Hzsin(kgx) or Hz(X) = Hz cogkgx)

while the last differential equation is solved by a exporaifiinction

—0o?H,(x) =0 for x>d

H,(X) = Hpexp(—ax) for x>d
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At the dielectric boundary = d the tangential electric and magnetic fields must
be continous for all values af This requires that the propagation consfantust
be same in both regions which results in the following ecqumti

B2 =K k=K +a
k2—k2: k§+a2
K§(nf — ng) = kj + o (2.36)

The continuity of the magnetic field at the inferface resiftsvo equations de-
pending on the mode we consider

Hz1 sin(kgd) = Hpexp(—ad) or Hz cogkyd) = Hpexp(—ad) (2.37)

One further relation is necessary in order to determine tiatitiesH, /Hz, Ky
anda. This relation is obtain from the requirement that the eledteld compo-
nentEy also has to be continuousyat= d. For Ey we find from equation ??

2
E, = jzo%ézx BH, (2.38)

We have to distinguish the two regions. In the first region weghZ = k3 and we
find

E, = jZo%Hzlcos(kdd) or E, = —jZo%Hzlsin(kdd)

in the second we hau¢ = —a? and we find for the electric field
_ ko
E, = jZo—H -
Ey = jZo Hzexp(—ax)

The continuity of the electric fields at the interface resuit

inlcos(kdd) = %Hzgexp(—ad) or —inlsin(kdd) = %Hzgexp(—ad)

ka ka
(2.39)
If we divide equation 2.37 by equation 2.39 we find:
kgdtan(kqd) = ad or —kgdcotkgd) = ad (2.40)

With the help of equation 2.36 we introduce the so called Wiher of an dielec-
tric slab waveguide:
V2 = Kgd? (ng — nj) (2.41)
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Figure 2.13: Graphic to determine the propagation constamslab wavequide

and the normalized values= kgd andv = ad. Thus equation 2.36 can be rewrit-
ten in the following form:
VZ = U 4V (2.42)

Figure 2.13 represents equation 2.40 and 2.42 in a graploical Since both
equations have to be satisfied only the points of intersedigtween the circle
and the functions 2.42 yield possible valuesi@ndyv for a given dielectric slab
wavequide described by theParameter.
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