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Chapter 1

Electromagnetic Field

1.1 Maxwell’s Equations

Electric and magnetic fields that vary with time are governedby physical laws
described by a set of equations known collectivily as Maxwell’s equations. James
Clerk Maxwell (1831-1879) gave the first formulation of these equations in his fa-
mous bookTreatise of Electricity and Magnetismin 1864, in which he proposed
the existence of electromagnetic waves. The first experimentell verification of
their existence was done by Heinrich Hertz (1857-1894) 1887in the ”Technische
Hochschule” Karlsruhe.

To describe the physical phenomena one defines different vector fields that
vary with the three spatial coordinates x,y,z and with time t. We start with the
introduction of the

~E = ~E(x,y,z, t) − electric field,
~B = ~B(x,y,z, t) − magnetic flux density.

The electric field~E and the magnetic flux density~B are regarded as fundamental
in that they give the force on a chargeq moving with a velocity~v.

~F = q(~E +~v×~B)

This force is called the Lorentz force.

In addition to the~E and~B fields, it is convinient to introduce auxiliary fields:

~D = ~D(x,y,z, t) − electric displacement density
~H = ~H(x,y,z, t) − magnetic field
~Jc = ~Jc(x,y,z, t) − conduction current density

1



In the case of fields in free space or in vacuum we have very simple relations
between this fields.

~D = ε0~E
~H = 1

µ0
~B

with
ε0 = 8,854·10−12 As

Vm − permitivity of vacuum

µ0 = 4π ·10−7 Vs
Am − permeability of vacuum

Since no charges exist in free space the conduction current density field~Jc is not
existing.

Faraday’s law

One of the basic laws of electromagnetic phenomena is Faraday’s law, which
states that a time varying magnetic field~B generates a electric field.

∮

C
~E ·d~s = − ∂

∂t

∫

A
~B·d~A (1.1)

To explain equation 1.1 see Figure 1.1. According to Faraday’s law the time rate

C

B

Figure 1.1: Generation of a electric field by a time varying magnetic field

of change of total magnetic flux is equal to the negative valueof the total voltage
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measured around the contourC. It is important to notice that the negative sign is
only true if the direction of the magnetic field and the orientation of the contour
is right handed as shown in the figure 1.1. With the help of Stoke’s theorem,
which states that the integral of a vector field around a closed contour is equal to
the integral of the normal component of the curl of this vector over any surface
havingC as its boundary we have

∮

C
~E ·d~s =

∫

A
(~∇×~E) ·d~A = − ∂

∂t

∫

A
~B ·d~A

hence we find as differential form of Faraday’s law.

~∇×~E = −∂~B
∂t

(1.2)

Ampere’s law

It formulates how a electric current will built up a magneticfield. A simple ex-
ample of this is, how a straight wire carrying the total current I is accompanied
by concentric magnetic field lines as shown in Figure 1.3 According to the law of

I

Figure 1.2: Magnetic field due to the current I of a wire

Oerstedt we have for any simple closed contour surrounding the wire
∮

C
~H ·d~S = I
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It was Maxwell who noticed that not only the conduction current density~Jc pro-
duces a magnetic field but also the so called displacement current density~Jv =
∂~D/∂t has to be considered. So he gave a new formulation of ampere’slaw.

∮

~H ·d~s =
∫

A
(

∂~D
∂t

+ ~Jc) ·d~A (1.3)

Again with the help of Stoke’s law we find
∮

~H ·d~s =

∫

A
(~∇× ~H)d~A

the differential form of ampere’s law:

~∇× ~H =
∂~D
∂t

+ ~J (1.4)

C

JC

JV

Figure 1.3: Magnetic field due to conduction and displacement current density

Gauss’s law

To deduce Gauss’s law we will start from equation 1.3 and apply it on a close
surface. Since a close surface has no bondary the right handside of equation 1.3
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will vansih and we find
∂
∂t

∫

A
~Dd~A =

∫

A
~Jcd~A

or integration with respect to time yields
∫

A
~Dd~A =

∫

dt
∫

A
~Jcd~A

The left handside of the last equation is of course equal to the total of charges
brought into the volume by the flewing currents. Hence we have

∮

A
~D ·d~A = Q

To clearify the meaning of this law consider Figure 1.4. It shows an arbitrary vol-

D

dA

Figure 1.4: Volume with a given charge densityρ

ume bounded by its surfaceA. Inside this surface we have an charge distribution
described by the function of charge density per unit volumeρ. Gauss’s law now
states that the total electric flux out of the volumeV is equal to the net charge
contained withinV.

∮

A
~D ·d~A =

∫

V
ρdV

The last equation my be converted to a differential form by using the divergence
theorem from Gauss.

∮

A
~D ·d~A =

∫

V
(~∇ ·~D)dV
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Hence the differential form of Gauss’s law reads

~∇ ·~D = ρ (1.5)

In contrast to the electric field there exist not magnetic chrages, so we have in this
case

~∇ ·~B = 0 (1.6)

In summary the electromagnetic phenomena is described by the following set of
four equations, known as Maxwell’s equations.

~∇×~E = −∂~B
∂t

~∇× ~H = ∂~D
∂t

+ ~J
~∇ ·~D = ρ
~∇ ·~B = 0

(1.7)

Phasor representation

Usually we consider only steady state solutions of electromagnetic fields as pro-
duced by currents having sinusoidal time dependence. The time dependence of
all fields can then be expressed by for example by the real partof the exponential
function.

~E(~r, t) =;~E(~r)cos(ωt +ϕ) = Re{~E(~r)exp( jϕ)exp( jωt)}

Thus we are ready to define the phasor of a electric field.

~E(~r) = ~E(~r)exp( jϕ)

Using the phasor representation the derivation with respect to time∂/∂t may be
replaced by a multiplication withjω. Hence we get for Maxwell’s equation for
fields with only sinusoidal time dependence in phasor notation.

~∇×~E = − jω~B
~∇×~H = jω~D +~J
~∇ ·~D = ρ
~∇ ·~B = 0

(1.8)

1.2 Constitutive relations

In material media the auxiliary fields are defined in terms of the polarization of the
material and the fundamental field quantities. The relationbetween for example~D
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and~E are known as constitutive relations and must be known beforethe solution
for Maxwell’s equations1.7 can be found.

We will first consider the electric case. Figure??a shows an undistored atom
possessing rotational symmetry. If an electric field~E is applied to a material body,
this force results in a distortion of the atoms or molecules as shown in Figure 1.5b
in such a manner as to create effective electric dipoles witha dipole moment~P per
unit volume. With the help of the dipole moment per unit volume we define the

E

+
-

Figure 1.5: Induced dipol by an electric field

displacement density vector~D by:

~D = ε0~E + ~P

For a great many materials the polarization~P is in the same direction as the applied
electric field~E and will be proportional to its absolute value. Thus we can rewrite
the above equation in the following form

~D = ε0~E + χe~E = ε0εr~E

whereχe is a constant of the material and is called electric susceptibility and εr is
the relative permittivity of the media. But if we consider sinusoidal time varing
fields only for low frequencies the motion of the atoms or molecules will be strict
in phase with the applied electric field. For higher frequencies there will be a
phase deviation between the electric field and the polarization and this will result
in a complex relative permittivity connecting the phasors of the fields

~D = ε0εr
~E = ε~E = (ε′− jε′′)~E

A complex permittivityε will allways occur whenever damping effects are present.
Loss in a dielectric material may also occur because of a finite conductivityσ. The
two mechanisems are indistinguishable as far as external effects related to power
dissipation are conserned. For example the curl equation for ~H may be written as

~∇×~H = jωε~E + σ~E
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with~J = σ~E beeing the conduction current density in the material. Hence we can
rewrite the above equation as

~∇×~H = jω[ε′− j(ε′′+
σ
ω

)]~E

With the help of the last equation we find for the loss tangent of a dielectric
medium

tan(δL) =
ωε′′+σ

ωε′
=

ε′′

ε
+

σ
ωε′

Any measurement of tan(δL) always includes the effects of finite conductivityσ
and damping effectsε′′. At microwave frequencies howeverε′′ is usually much
larger thanσ/ωε′ because of the high frequencies. Materials for which~P is lin-
early related to~E and in the same direction as~E are called linear isotropic mate-
rials.

If we consider crystals, these structures lack spherical symmetry. Then the
polarization per unit volume will depend on the direction ofthe applied field. In
the generale case were the orientation of the crystal structure has a different orien-
tation with respect to the used coordinate system one gets the following equation
between the fields~D and~E.

~D =





Dx
Dy
Dz



 =





εxx εxy εxz
εyx εyy εyz
εzx εzy εzz



 ·





Ex
Ey
Ez





For anisotropic media the permittivity is denoted tensor permittivity.

In the case of the magnetic field in a isotropic linear material we can write an
analog equation like in the case of the electric field.

~B = µ0(1+χm)~H

wereµ = µ0(1+ χm) is called the permeability of the media. As in the electric
case, dissipation will causeµ to be a complex frequency dependent parameter
with a negative imaginary part.

Also, there are magnetic materials that are isotropic, in particular, ferrites
are anisotropic magnetic materials of great importance at microwave frequencies.
These exhibit a tensor permeability of the following form

[µ] =





µ1 jµ2 0
− jµ2 µ1 0

0 0 µ3





when a static magnetic field is applied along the axis for which the permeability
is µ3.
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1.3 Static fields

Static fields are defined by the fact that there are no variations in time, hence all
derivatives with respect to time vanish and Maxwell’s equations 1.7 reduce to

~∇×~E = 0
~∇× ~H = ~J
~∇ ·~D = ρ
~∇ ·~B = 0

(1.9)

1.3.1 Electrostatics

We will start the discussion of these equation with the electric field. Since the
static electric field has zero curl the line integral of~E around an arbitrary closed
contour is zero. One calls such a field a conservative field which can always be
expressed by the gradient of a scalar function, known as potential functionφ, since
we have~∇× (~∇φ) = 0. Thus we can express the electric field by the following
equation:

~E = −~∇φ

With the help of the divergence of the electric displacementdensity field~D and in
the case of spatial constant permittivityε we find

~∇ ·~D = ~∇ · (ε~E) = −ε~∇ · (~∇φ) = ρ

This results in Poisson’s equation

~∇2φ = −ρ
ε

(1.10)

If there exits no charge density distribution, this equation reduces to Laplace’s
equation

~∇2φ = 0 (1.11)

The basic problem of electro static fields is to slove Piosson’s or Laplace’s equa-
tion for a potential functionφ satisfying appropriate boundary conditions to be
discussed later. To get familiare with Piosson’s equation we will study the one
dimensionale pn-junction as an example.

Example: pn-junction
Figure 1.6a shows a pn-junction where the p and n regions of the semiconductor
a seperated by an imaginary sheet. In Figure 1.6b this sheet has been removed.
Now the free electrons in the n region will recombinate with the free holes of
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Figure 1.6: pn-junction

the p region, resulting in a space charge distribution as shown in Figure 1.7.ND

andNA beeing the donator respectivly acceptor concentrations ofthe doped semi-
conductor whilewp andwn are the widths of the depletion zones in the p and n

-

6

xwn

−wp

ρ(x)

eNA

eND

Figure 1.7: charge distribution of a pn-junction

regions. Since the whole semiconductor is neutral, we have the following equation
connecting the concentrations of the doping and the depletion width.

ND wn = NAwp

To find the electric field distribution and potential function we use the one dimen-
sional divergence equation of the electric displacement density from 1.9.

dE(x)
dx = −e

εNA for −wp < x < 0

dE(x)
dx = e

εND for 0 < x < wn
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Integration yields the following equations for the electric field distribution

E(x) = −eNA
ε (x+wp) for −wp < x < 0

E(x) = −eND
ε (wn−x) for 0 < x < wn

A second intgeration yields for the potential function

φ(x) = eNA
2ε (x+wp)

2 for −wp < x < 0

φ(x) = eND
2ε (wn(wp+2x)−x2) for 0 < x < wn

Figure 1.8 shows the calcualted electric field and potentialfunction of a pn junc-
tion.

-
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x

φ(x)
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Figure 1.8: Electric field and potential function of a pn-junction

1.3.2 Magnetostatics

Since~B always has zero divergence, it may be derived from the curl ofa vector
potential, normally denoted by~A.

~B = ~∇×~A

As a consequence, this makes the divergence of~B vanish identically. With the
curls of the magnetic field~H andµ beeing spatial constant we find

~∇× (µ~H) = ~∇×~B = ~∇× (~∇×~A) = µ~J
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To go one with our considerations we have to use the followingidentity

~∇× (~∇×~A) = ~∇(~∇ ·~A)−~∇2~A

Since the~B field defines onyl the curls of~A its divergence may be set to zero
without affecting its curls and hence the equation reduces to

~∇2~A = −µ~J (1.12)

If the problem can be described by cartessian coordinates the last equation can be
rewriten in three not coupled equations for all three coordinates.

~∇2Ax = −µJx
~∇2Ay = −µJy
~∇2Az = −µJz

(1.13)

Comparing Piossion’s eqution of the electrostatic field 1.10 with equation 1.13
clearly shows that electrostatic field problems are easier to solve compared to
magnetostatic field problems.

Example

1.4 Wave equation

To gone on in our study of Maxwell’s equations we will first consider them in free
spaces, this means that there are no charge distributionsρ ≡ 0 and no conduction
currents~J ≡ 0. On the other hand we will start with arbitrary time dependence.
This means we study the possible solutions in the time domain.

1.4.1 Time domain

Under the discussed circumstances the curl equations reduce to the following form

~∇×~E = −∂~B
∂t

~∇× ~H =
∂~D
∂t

We will consider only spatial constant linear lossles isotropic materials, so that
the following constitutive relations hold true

~D = ε0εr~E = ε~E ~B = µ0µr~H = µ~H
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To find a differential equation we first consider the curls of the first curl equation

~∇× (~∇×~E) = −∂~∇×~B
∂t

= −µ
∂~∇× ~H

∂t

With the known result of a double curl of a vector field and the help of the second
curl equation we find

~∇(~∇ ·~E) − ~∇2~E = −µε
∂2~E

∂t2

Since there are no free charges we have~∇ ·~E = 0 and the first term vanihes. As a
result we obtain the so called wave equation.

~∇2~E − µε
∂2~E

∂t2 = 0 (1.14)

To find a solution for equation 1.14 we first will consider the special case that
only a x-component of the electric field exists which has onlya variation in the
z-direction.

~E = Ex(z)~ex

In this special case equation 1.14 reduces to

∂2Ex

∂z2 − µε
∂2Ex

∂t2 = 0 (1.15)

Following d’Alembert we consider an arbitrary functionEx(z, t) of the following
form

Ex(z, t) = E0 f (z±vt) = E0 f (y)

that means, the field distribution is define by an arbitrary function f (y) with the
only restriction that its argument has a spezial dependenceon the spatial coordi-
natez and on the time coordinatet with y = z± vt. For the derivate with respect
to zandt we get

∂2Ex

∂z2 = E0
∂2 f

∂y2

∂2Ex

∂t2 = E0v2 ∂2 f

∂y2

Introducing the above result in equation 1.15 we get

(1−µεv2)E0
∂2 f

∂y2 = 0

13



We have a non trivial solution only in the case were the bracket term vanihes.
Hence we find

v =
1√
µε

(1.16)

To discuss the physical meaning of the found solution we havelook on Figure 1.9.
It shows an arbitrary field distributionEx(z, t) at the timet = 0. If we for example
consider the specail pointEx(0,0) = Ex(y = 0) than this point will move in the
posistiv or negative z-direction, depending on the sign ofv.

Ex(z,t)

vt

z

Figure 1.9: Propagation of a wave

0 = z± vt → z = ∓vt

So we found that a function of the formf (z− vt) describes a wave with arbitrary
form moving in the positive z-direction, whereas a functionof the form f (z+ vt)
descirbes the same have moving in the negative z-direction.If we consider a wave
in free space we haveµr = 1, εr = 1 and equation 1.16 reduces to

v = c0 =
1√
µ0ε0

(1.17)

Equation 1.17 was a create theroretical success of Maxwell’s theorie since it shows
that electromagnetic waves propagate with the speed of light c0 and its value could
be evaluated from fundamental quantities measurable in theelectrostatic and mag-
netostatic fields. In 1986 the value of the speed of light in free space as funda-
mental constant was defined to bec0 = 2,99792458·108m/s by the Task Group
on Fundamental Constants, a committee of the InternationalCouncil of Scientific
Unions. For the most cases in the domain of microwaves and optics we have
µr = 1, so the velocityc of electromagnetic waves in media can be evaluated by

c =
c0√
εr

=
c0

n
n =

√
εr refractive index of the media (1.18)
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Energy and pointing vector in time domain

To study the behaviour of the electromagnetic field in a general form we will
examine the divergence of the cross product~E×~H. With the help of the following
identity

~∇ · (~E× ~H) = (~∇×~E) · ~H − (~∇× ~H) ·~E
With the help of Maxwell’s equations 1.7 the right terms of the last equation may
be rewriten as

−∂~B
∂t

· ~H − (~J +
∂~D
∂t

) ·~E

Finaly we find for the divergence of the cross product~E× ~H

−~∇ · (~E× ~H) = ~J ·~E +
∂
∂t

(

1
2
~B · ~H

)

+
∂
∂t

(

1
2
~D ·~E

)

(1.19)

To go on in the discussion of equation 1.19 it is nessary to indentify the physical
meaning of the right terms. These are

~J ·~E - dissipation energy density
1/2~B· ~H - energy density of the magnetic fieldwm

1/2~D ·~E - energy density of the electric fieldwe

If we introduce the vector~S= ~E× ~H than equation 1.19 definece the divergence
of this vector. To come to a physical interpretation we will do an integration
over an arbitrary volume that is bounded by a surfaceA. With the help of the
divergence theorem of Gauss the volume integration over~∇ ·~Scan be transformed
in an integration over the bounding surface and we get

−
∮

A
~S·d~A =

∫

V
~J ·~E dV +

∂
∂t

∫

V
wmdV +

∂
∂t

∫

V
wedV

Rearranging the last equation we find

− ∂
∂t

(We + Wm) =

∮

A
~S·d~A +

∫

V
~J ·~E dV (1.20)

with Wm andWe beeing the total magnetic respectively electric field energie stored
in the considered Volume.

Wm =
∫

V
wmdV We =

∫

V
wedV

Considering Figure 1.4.1 equation 1.4.1 states that the time dependent decrease
of electric as well as magnetic energie is equal to the total power dissipated in the
volume and a power defined by the vector~S leaving the volume. The vector~S is
denoted as Pointing vector, it descirbes the time dependentpower that leaves the
volume as radiation.

15



S

dA

Figure 1.10: Volume of integration to define the pointing vector

1.4.2 Frequency domain

In this section we will consider sinusoidal time dependence. In this case the fields
are discribed by phasors defined in 1.1. The differentiationwith respect to time
in this case is replaced by a multiplication withjω. So the wave equation 1.14
becomes

~∇2~E + ω2µε~E = 0 (1.21)

or if we again restrict the electric field to be of the simple form ~E = ~E0(z)~ez

equation 1.21 reduces to

dEx(z)
dz

+ ω2µεEx = 0

That is a second order homogenous linear differential equation with constant coef-
ficient. It is well known that this differential equation is solved by the exponential
funktion

Ex(z) = E0exp(− jkz) with k = ω
√

µε (1.22)

The introduced constantk is called the wave number. To get a physical interpreta-
tion of equation 1.25 we have to convert the phasor representation to really fields.
This is done by multiplying equation?? with exp( jωt) and considering only the
real part.

Ex(z, t) = Re{Ex(z)exp( jωt)} = E0cos(ωt−kz)

In the last equation we consider the constantE0 to be real. Figure 1.11 shows the
field distribution of the electric field along the z-coordinate at t = 0 and after a

16
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0 t = 0

t = ∆t
1

6Ex(z, t)
Êx0

-1 -0.6 -0.2 0.2 0.6 -
z
λ

1

Figure 1.11: Electric field distribution

time intervall∆t. In contrast to Figure 1.9 the electric field extens formz → −∞
to z → ∞. That accounts for the fact, that in the sinusoidal case the sources are
supposed to radiate sincet → −∞. From Figure 1.11 it is also clear that the
function exp(− jkz) describes a wave moving in the posistive z-direction. If we
investigate the the total phase of the cosine functionϕ = ωt − kz and if we for
example examine a point with constant phaseϕ = 0, we find for the phase velocity

0 = ωt −kz → z =
ω
k

t = ct

From the above equation we deduce that a point of constant phase is moving with
c the velocity of light. Another important constant of a wave with sinusiodal time
dependence is the wavelengthλ, that for example the distance between to hills of
the wave. With the help of Figure 1.11 we find

λ =
c
f

(1.23)

Energy and pointing vector in frequeny domain

Hier soll noch was hin, siehe Olver
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1.5 Boundary conditions

In order to find proper and unique solutions to Maxwell’s equation for situations
of pratical interest a knowledge of the behavior of the electric and magnetic field
at boundaries separating differnent material bodies is required.

The integral formulation of Maxwell’s equation provide themost convenient
formulation in order to deduce the required boundary conditions. Consider two
media with parametersε1, µ1 andε2, µ2 form a boundary as shown in Figure 1.12.
To deduce boundary conditions for the electrical field we first consider a small

D

D

1

2

h
1e

2e
2m

1m

Figure 1.12: Boundary between two different media

cylinder of heighth → 0, if we now apply Gauss’s law we find in the case of
vansihing surface charges.

lim
h→0

∮

C
~D ·d~A = 0

As the height of the cylinder tends to zero only the top and botton surface of the
cylinder will contribut to the integral and we find

~D1 ·∆~A1 + ~D2 ·∆~A2 = 0

If we now remember that the top and the botton surface have thesame value∆A,
but their normal unit vectors have opposite direction~e1 =−vecu2 = vecun we find

~D1 ·~en∆A − ~D2 ·~en∆A → ~D1 ·~en = ~D2~en

The last equation states that the normal conponent of the electric displacement
density has to be continous at a boundary interface. A similar result clearly holds
true for the magnetic flux density.

∮

C
~B ·d~A = 0 → ~B1 ·~en = ~B2 ·~en

To obtain boundary conditions on the tangential componentsof the electric field~E
and the magnetic field~H the circulation integrals as shown in Figure 1.13 are used.
To deduce the condition we define a tangent unit vector~et lying in the boundary
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Figure 1.13: Boundary between two different media

plane as well as in the plane of the circulation integral. Again we suppose that the
heighth of the last plane tends to zero and so does the magnetic flux it.So we find

lim
h→0

∮

C
~E ·d~s ≈ ~E1 ·∆~s1 + ~E2 ·∆~s2 = 0

If we take into consideration the different orientations ofthe wayelements∆~s1 =
−∆~s2 = ∆s~et we get

~E1 ·~et∆s − ~E2 ·~et∆s = 0 → ~E1 ·~et = ~E2 ·~et

The last equations states that the tangential components ofthe electric field have
to be continous at a boundary interface. The same result we find for the tangential
magnetic field from its circulation integral.

lim
h→0

∮

~H ·d~s = 0 → ~H ·~et = ~H ·~et

The boundary conditions at a conducting surface will be discussed in the next
section.

1.6 Plane wave

We will now go on to discuss one solution of Maxwell’s equation the plane wave
allready started in 1.4 in a more generall form. In the time harmonic case the wave
equation 1.21 reads

~∇2~E + k2~E = 0 with k = ω
√

µε

Hence the electric field is a solution of the Helmholtz equation. This vector equa-
tion holds true for each component and in a cartesian coordinate system we get

~∇2Ex(x,y,z) + k2Ex(x,y,z) = 0
~∇2Ey(x,y,z) + k2Ey(x,y,z) = 0
~∇2Ez(x,y,z) + k2Ez(x,y,z) = 0
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That are three partial differential equations for the threeunknown functionsEx,
Ey andEz. A standard procedure for solving a partiall differential equation is the
method ofseparation of variables. However, this method does not work for all
types of partial differential equations in all various coordinate systems. But in
our case it will work. The basic method is to express the unknown functions by
a product of funktions depending only on one variable. We will discuss this in
detial for the functionEx

Ex(x,y,z) = X(x)Y(y)Z(z)

Substituting this expression intio the wave equation yields

∂2X

∂x2 YZ + X
∂2Y

∂y2 Z + XY
∂2Z

∂z2 + k2XYZ = 0

Dividing the last equation by the total functionEx gives

1
X(x)

∂2X

∂x2 +
1

Y(y)
∂2Y

∂y2 +
1

Z(z)
∂2Z

∂z2 + k2 = 0

Each of the first three terms is a function of only one single independent variable
and hence the sum of these terms can equal a constant−k2 only if and only if
each term is equal to a constant. Thus the partial differential equation of three
unknown funktions is separated in three ordinary differential equations of only
one unknown function each

1
X(x)

d2X
dx2 = −k2

x

1
Y(y)

d2Y
dy2 = −k2

y

1
Z(z)

d2Z
dz2 = −k2

z

(1.24)

with the so called separation condition

k2
x + k2

y + k2
z = k2

The differential equations of 1.24 may all be solved by the exponential function,
so we find the following solution for unknown fieldEx(x,y,z)

Ex(x,y,z) = Ex0exp(− jkxx)exp(− jkyy)exp(− jkzz)

If we introduce a wave vector~k by

~k = kx~ex + ky~ey + kz~ez
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and if we introduce the vector~r to the position of an arbitrary point in space

~r = x~ex + y~ey + z~ez

we can rewrite the equation for the field component functionEx in the following
form

Ex(~r) = Ex0exp(− j~k ·~r)
Similar solutions may be found for the field componentsEy andEz

Ey(~r) = Ey0exp(− j~k ·~r)
Ez(~r) = Ez0exp(− j~k ·~r)

In a full vector formulation the found solution for the Helmholz equation for a
space described by the parametersµ andε reads

~E(~r) = ~E0exp(− j~k ·~r) (1.25)

In generall the constant vector~E0 may be a complex vector, to simplify the follow-
ing considerations we will suppose that it is real. Since we did not consider any
charge density in that space the above field has to fullfill thedivergence condition
~∇ ·~E(~r) = 0 or with the help of equation 1.25 we find

~∇ · [~E0exp(− j~k ·~r)] = ~E0 · [~∇ ·exp(− j~k ·~r)] = − j~k ·~E0exp(− j~k ·~r) = 0

Hence we have
~k ·~E0 = 0 (1.26)

that means the constant vector~E0 has to be perpendicular to the wave vector~k.
A solution for the magnetic field can be found by using the curlequation of the
electric filed from 1.8, which leads to

~H = − 1
jωµ

~∇× [~E0exp(− j~k ·~r)] =
1

jωµ
~E0× [~∇ ·exp(− j~k ·~r)] =

1
ωµ

~k×~E0exp(− j~k ·~r)

If we introduce a unit vector~ew in the direction the wave is propagting we have
~k = k~ew and find as final equation for the magnetic field

~H =
k

ωµ
~ew×~E0exp(− j~k ·~r) (1.27)
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It is interesting to examine the inverse of first term in more detail. With equation
1.21 we definedk to be equal toω

√
µε. Hence we get

ωµ
k

=

√

µr µ0

εr ε0

One ususally defines the so called intrinsic impedanceZ0 of free space with

Z0 =

√

µ0

ε0
≈ 377Ω (1.28)

With the help of this constant one defines the field impedane ofa plane wave in a
space defined by theµr andεr by:

ZF =

√

µr

εr
Z0

The inverse of this value is called field admittanceYF = 1/ZF . Thus the equation
for the megnatic filed reads

~H =
1

ZF
~ew×~E(~r) (1.29)

Note that~H is perpendicular to the electric field~E and the dircetion of wave propa-
gation~ew. Hence both the electric field and the magnetic field lie in constant phase
planes. For this reason this type of wave is called atransvereseelectromagnetic
wave (TEM-wave).

Real electric field

To obtain the real electric field corresponding to the phasorreprestentation of
equation 1.25 we have to do the following operation

~E(~r, t) = Re[~E0exp(− j~k ·~r)exp( jωt)] = E0cos(~k~r −ωt)

The wavelength again is the distance the wave must travel to undergo a phase
change of 2π. Thus we find

kλ = 2π → λ =
c
f

with c beeing the speed of light in a media.

c =
c0√
µrεr
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Phase velocity

The phase velocity is the velocity with which an abserver would have to move in
order to see a constant phase of the wave. For the phase to be constant we have

~k ·~r − ωt = const.

If we introduceθ as an angle between the direction of wave propagation~k and~r(t)
the direction of movement we have

k r(t) cos(θ) − ωt = const.

Differentiation of the last equation with respect to time yields for the phase veloc-
ity vPh

vPh =
dr
dt

=
ω

kcos(θ)
=

c
cos(θ)

(1.30)

It is intereseting to notice that only in the direction of wave propagation (θ = 0) we
have a phase velocity which is equal to the speed of light but in all other directions
the phase velocity is greater.

Power density

To calculate the power density that is transported by a planewave we evaluate the
time averaged pointing vector

<~S> =
1
2

Re[~E×~H
∗
] (1.31)

With the help of equation 1.29 we find

<~S> =
1

2ZF
Re[~E× (~ew×~E

∗
)] =

1
2ZF

Re[~ew(~E ·~E∗
) − ~E

∗
(~E ·~ew)]

Since the last term vanishes we get for the power density transported by a plane
wave

<~S> =
1

2ZF
|~E|2~ew (1.32)

Of course the power density is transported in the direction of wave propagation.

1.6.1 Reflection from a dielectric interface

In Figure 1.14 the half spacez≥ 0 is filled with a dielectric media with total
permitivityε2. A plane wave is assumed to incident from the regionz< 0. Without
loss of generality the xy-plane is orientated so that the unit vector~ei spezifying
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Figure 1.14: Reflection from a dieletric boundary

the direction of the incident wave lies in the xy-plane. Thenits direction can be
defined with the help of the unit vectors~ex,~ez and the angleθi defined in Figure
1.14.

~ei = ~exsin(θi) +~ezcos(θi)

Parallel polarization

We first will consider the case were the electric field vector is lying coplanar with
~ei in the xz-plane. With the help of the propagation vector of the plane wave, ist
wave vector~ki is given by.

~ki =
2π
λ1

~ei =
2π
λ0

√
εr ~ei

So the electric and magnetic fields of the incident wave are described by the fol-
lowing equation

~Ei(~r) = ~Ei0exp(− j~ki ·~r) ~H i(~r) = YF1~ei ×~Ei(~r)

Part of the incident power will be reflected and the remeinderwill be transmitted
in to the dielectric media. To describe the direction of the reflected wave we use
the unit vector~er which is defined with the help ofθr shown in Figure 1.14.

~er = ~exsin(θr) −~ezcos(θr)

The electric field as well as the magnetic field are to define analog to the incident
wave,

~Er(~r) = ~Er0exp(− j~kr ·~r) ~Hr(~r) = YF1~er ×~Er(~r)

with
~kr =

2π
λ1

~er =
2π
λ0

√
εr ~er
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In the dielectric media 2 the solution for the plane wave is the same as in medium
1 but withε1 replaced byε2. To define the direction of propagation in Figure 1.14
a third angleθt was defined. So we get for the propagation vector and the fields
of the transmitted wave.

~et = ~exsin(θt) +~ezcos(θt)

~Et(~r) = ~Et0exp(− j~kt ·~r) ~Ht(~r) = YF2~et ×~Et(~r)

At the moment the two amplitudesEr0, Et0 and the angle of refelctionθr and
transmissionθt are unknown. To solve for this values he have to apply the bound-
ary condistions already discussed. That means the tangential components of the
electric and magnetic fields have to be continous at the interfacez= 0. Of course
these components have to be continous for all values of x and yin this plane.
This is only possible if the fields on adjacent sides of the boundary have the same
variation with x and y. Hence we must have

ki eix = kr erx = kt etx

The first part leads to the following conglution

2π
λ1

sin(θi) =
2π
λ1

sin(θr) → θi = θr

This is the well known law of reflection allready known from playing pool billiard.
In the second case we have to fullfill the following equation

2π
λ1

sin(θi) =
2π
λ2

sin(θt)

With the help of the refraction coefficientsn1 =
√

ε1 andn2 =
√

ε2 the last equa-
tion may be rewritten as

2π
λ0

n1sin(θi) =
2π
λ0

n2sin(θt)

This leads directly to Snell’s law of refraction

sin(θt)

sin(θi)
=

n1

n2
(1.33)

Example for total reflection

To go on in our discusion we have to consider the field components in the
interface. In the following considerations we will useθ1 = θi = θr andθ2 = θt .
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For the electric field x-components of the incident, the reflected and transmitted
wave we find

Eix = Ei0cos(θ1)
Erx = Er0cos(θ1)
Etx = Et0cos(θ2)

Imposing the boundary condition of continuity to the x component atz= 0 yileds
the following relation

(Ei0 + Er0)cos(θ1) = Et0cos(θ2)

Which can be brought to the following form with the help of Snell’s law 1.33

(Ei0 + Er0)cos(θ1) = Et0

√

1−sin2(θ2) = Et0

√

1− n1

n2
sin2(θ1)

Of course the magnetic field has only y-components and hence we find for

Hiy = YF1Ei0 Hry = −YF2Er0 Hty = YF2Et0

Thus the continuity of the tangential magnetic field imposesthe following equa-
tion.

YF1(Ei0 − Er0) = YF2Et0

If we define a reflection coefficient byr = Er0/Ei0 and a transmission coeffcient
by t = Et0/Ei0 the two boundary conditions result in the following two equations

(1 + r)cos(θ1) = t
√

1− n1
n2

sin2(θ1)

n1(1− r) = n2 t

If we solve this equations for the reflection and transmission coefficient we find

r =

√

(

n2
n1

)2
− sin2(θ1) −

(

n2
n1

)2
cos(θ1)

√

(

n2
n1

)2
− sin2(θ1) +

(

n2
n1

)2
cos(θ1)

(1.34)

t =
2
(

n2
n1

)2
cos(θ1)

√

(

n2
n1

)2
− sin2(θ1) +

(

n2
n1

)2
cos(θ1)

(1.35)
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Figure 1.15: Reflection from a dieletric boundary

Perpendicular polarization

In contrast to the first case of parallel polariziazed electric field we will discuss the
case of perpendicular polarization not in detail. Figure 1.15 shows the consider
configuration. As shown in this figure now the electric field vector is perpendic-
ular to plane of incident. This leads to different equationsto fullfill the boundary
conditions. As a consequence the equations for the reflection and transmission
coefficient differ from the parallel case.

r =

cos(θ1) −

√

(

n2

n1

)2

− sin2(θ1)

√

(

n2

n1

)2

− sin2(θ1) + cos(θ1)

(1.36)

t =
2cos(θ1)

√

(

n2

n1

)2

− sin2(θ1) + cos(θ1

(1.37)

Example for reflections Brewster angle

1.6.2 Reflection from a conducting plane

To study the reflection from a conducting plane we consider Figure 1.17. The half
spacez≥ 0 is filled with a conducting material with conductanceσ. A plane wave
with the electric field vector polarized in the x-direction is incident perpendicular
on that plane coming fromz→ −∞. Of course a reflected wave will emerge
from the plane and propagate in the negative z-direction. Ifwe again define the
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Figure 1.16: Reflection coefficient as function of angle of incident

Figure 1.17: Reflection from a conducting plane

reflection coefficient as the ratio of reflected to incident field amplitude of the
electric field, we have the following fields in the half spacez< 0.

~Ei(z) = Ei0~exexp(− jk0z)
~H i(z) = Y0Ei0~eyexp(− jk0z)
~Ei(z) = r Ei0~exexp( jk0z)
~H i(z) = −rY0Ei0~eyexp(− jk0z)

In the time harmonic case we found for the complex permitivity

ε = ε− j
σ
ω

in the case of high conductivity this equation reduces to

ε = − j
σ
ω

and hence the wave equation in the conducting material becomes

~∇2~E − − jωµσ~E = 0 (1.38)
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Equation 1.38 has the form of a diffusion equation known fromthe flow of heat
in a thermal conductor. In our case we will only consider a electric field in x-
direction with a z-dependence, hence equation 1.38 reducesto an ordinary differ-
ential equation

d2Et(z)

dz2 − jωµσEt(z) = 0

It is well known that this differentail equation is solved bythe exponential func-
tion, so we find as solution

~E(z) = Et0~ex exp(−γz) with γ =
√

jωµσ

If we take the square root ofj we can breakγ in its real (α) and imaginary (β) part

γ = (1 + j)

√

ωµσ
2

If we are only interested in the absolute value of the transmitted electric field we
find the following functional dependence

|~Et(z)| = |Et0|exp(−αz)

From the last equation we see that the transmitted field decays exponentially in
the conducting material. One defines a so called skin depthδs as that distancez
from the surface, were the absolute value of the electric field is already reduced
by a factor 1/e. This leads to the following equation forδs

δs =

√

2
ωµσ

(1.39)

Example: Skin depth for cooper at f = 100MHz
As conductivity for cooper we haveσCu = 6·107 S

m and as permeabillity we have
to usµ0 Thus we get for the skin depth

δs =

√

2

2π1084π10−76106m ≈ 6,5µm

To callculate the magnetic field we have to use the curl equation for the electric
field of 1.8

~Ht = − 1
jωµ

~∇×~Et =
γ

jωµσ
Et0exp(−γz)~ey (1.40)

With the help of equation 1.40 we are able to define the field impedance in a
conductorZm

Zm =
jωµ
γ

= (1 + j)

√

ωµ
2σ

= (1 + j)
1

σδs

29



Example: Field impedance of cooper at 100MHz

Zm =
1 + j

61076,510−6Ω ≈ (1+ j)2,6mΩ

This is a very small value compared to the field impedance of plane wave in free
space.

Returning to the boundary value problem and imposing the boundary condi-
tions of continuity of the tangential fields at the boundaryz= 0 gives the following
equations

(1 + r) = t

(1− r)Y0 = Ymt

Solving this equations for the reflection and transmission coefficient yields

r =
Zm − Z0
Zm + Z0

t =
2Zm

Zm + Z0

(1.41)

Since the absolute value ofZm is very small compared toZ0 the intrinsic impedance
of free space, the reflection coefficientr is almost equal to−1 and the transmis-
sion coefficient is very small. Almost all the incident poweris therefor reflected
from metallic boundary. For the electric field in the conductor in dependence of
the magnetic fieldHy0 on its surface we find

Ex(z) = (1 + j)

√

µω
2σ

Hy0 exp(−γz)

In the limit σ → ∞ for a perfect conductor the electric field will vanish. This
results in the following boundary conditions on a surface ofa perfect conductor
with surface normal~en

~en×~E = 0
~en×~H = ~Js surface current

(1.42)

Muss noch etwas ausführlicher
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Chapter 2

Transmission lines and waveguides

In this chapter we will deal with waves that are propagating along three dimen-
sional structures. We will allways suppose that the cross section of the structure
will not change in the z-direction, so that waves guided by the structure will prop-
agate for example in the positive z-direction. In this chapter we will not deal

Figure 2.1: Cross section of different wave guides

with reflected waves, because the electromagnetic field distribution of that waves
does’nt differ essentially in the considered cross section. Figure 2.1 shows some
examples for wave guides we will investigate in this chapter.

2.1 Classification of wave solutions

Since no sources are considered the electric and magnetic fields are solutions of
the homogeneous Helmholtz equations

~∇2~E + k2~E = 0 or ~∇2~H + k2~H = 0 (2.1)
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In this chapter we will try to find solutions of the above equations that describe
waves propagating in the positive z-direction of the structure. As we saw in the
preceding chapter in the time harmonic case wave propagation in the positive z-
direction is describe by the function exp(− jβz) with β beeing the phase propaga-
tion factor of the considered wave. To deal with arbitray structures in the xy-plane
we first rewrite the nabla operator in a first part working in the transversal plane
and a second one working in the z-direction

~∇ = ~∇t +~ez
∂
∂z

All fields considered in this chapter will have a z-dependence describe by exp(− jβz).
So the differentiation with respect to z in above nabla operator may be replaced
by a multiplication with− jβ. Hence we find its new form

~∇ = ~∇t + − j β~ez

We will also decompose the electric and the magnetic field into a transversal and
an axial component.

~E(x,y, t) = ~Et(x,y)exp(− jβz) + ~Ez(x,y)exp(− jβz)

~H(x,y, t) = ~Ht(x,y)exp(− jβz) + ~Hz(x,y)exp(− jβz)

In the above equations the field distribution in the transversal plane is formulatted
for simplicity as dependence on the variablesx andy, but other transversal coor-
dinate systems are also applyable. We will now rewrite the curl equations of 1.8,
to see how they change under the considered circumstances

~∇×~E = [~∇t − jβ~ez]× [~Et(x,y) + ~Ez(x,y)]exp(− jβz) =

− jωµ[~Ht(x,y) + ~Hz(x,y)]exp(− jβz)

If we consider the different direction, we notice that the above equation may be
separated in two ones.

~∇t ×~Et(x,y) = − jωµ~Hz(x,y) (2.2)

~ez×~∇Ez(x,y) + jβ~ez×~Et(x,y) = jωµ~Ht(x,y) (2.3)

In analog manner the curl equation of the amgnetic field of 1.8may be decom-
posed into the following equations

~∇t ×~Ht(x,y) = jωε~Ez(x,y) (2.4)

32



~ez×~∇Hz(x,y) + jβ~ez×~Ht(x,y) = − jωε~Et(x,y) (2.5)

If we examine examine the divergence equation of the magnetic field, we find

~∇t ·~Ht(x,y) = jβHz(x,y) (2.6)

and in the case of the electric field

~∇t ·~Et(x,y) = jβEz(x,y) (2.7)

2.1.1 Transverse electromagnetic waves

In this subsection we will discuss the generall properties of TEM waves, waves
that have no field components in the direction of propagation. Hence

Ez ≡ 0 Hz ≡ 0

In this case the equations 2.2 to 2.7 reduce to

~∇t × ~Et(x,y) = 0
β~ez × ~Et(x,y) = ωµ~Ht(x,y)
~∇t × ~Ht(x,y) = 0

β~ez × ~Ht(x,y) = −ωε~Et(x,y)
~∇t · ~Et(x,y) = 0
~∇t · ~Ht(x,y) = 0

(2.8)

As a consequence of equation 2.8a the curls of the transversal electric field~Et
vanishes, this means that it may deduced from a scalar potential functionφ(x,y)
defined in the transversal plane.

~Et(x,y) = −~∇tφ(x,y) (2.9)

With the help of equation 2.8b we find for the transversal magnetic field

~Ht =
β

ωµ
~ez×~Et(x,y) (2.10)

Using the divergence equation 2.8e we find for the potential function

~∇ · [~∇φ(x,y)] = ~∇2φ(x,y) = 0

From the last equation we see that the scalar potentialφ(x,y) has to fullfill Laplace’s
equation and the certain boundary conditions to be a appropriate function.
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The electric field of the TEM-wave propagating along the structure is then
given by

~Et(x,y,z) = −~∇tφ(x,y)exp(− jβz) (2.11)

Of course also this field has to statisfy Helmholtz equation 2.1, leading to

(~∇2
t −β2)~Et + k2~Et = 0

Using the potential function we can rewrite the above equation

~∇t

[

~∇2
t φ(x,y) + (k2 − β2)φ(x,y)

]

= 0

Since the first term is zero the bracket(k2 − β2) must vanish, giving us the prop-
agation phase constantβ of TEM waves

β = k = ω
√

µε =
2π
λ

(2.12)

With the help of eqution 2.8b we find for the magnetic field of a TEM wave

~Ht(x,y,z) =
β

ωµ
~ez×~Et(x,y,z) =

1
ZF

~ez×~Et(x,y,z) (2.13)

Form this equation it can easily been recognized that the magnetic field is allways
perpenticular to the electric field and as in a plane wave the amplitudes of the
electric and magnetic fields are connected by the real field impedanceZF .

Example: Lossless coaxial transmission line
Figure 2.2 shows the cross section of a coaxial transmissionline. It is reasonable
to use cylindrical coordinates to describe ist geometry andto formulate the bound-
ary problem. In this coordinate system the square of the tranverse nabla operator
is given by

~∇2 =
1
ρ

∂
∂ρ

(

ρ
∂

∂ρ

)

+
1

ρ2

∂2

∂ϕ2

We will search for a potentail functionφ that is independent of theϕ-coordinate,
thus the above equation reducxes to

∂
∂ρ

(

ρ
∂φ(ρ)

∂ρ

)

= 0

This equation can be easily integrated and gives as its result a first constantC1

ρ
∂φ(ρ)

∂ρ
= C1
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Figure 2.2: Cross section of a coaxial transmission line

A further integration yields the following equation for thepotential function

φ(ρ) = C1 ln(ρ) + C2

The two constants of the last equation may be determined by imposing the bound-
ary conditions on the potential function. In generall the outer conductor of a
coaxial line is supposed to have the potentialφo = 0, while a field between the
conductors may only exist if the inner conductor has a differnent potential, say
φi = U0. So the potential function has to fullfill the following boundary condi-
tions

φ(ρ = d/2) = U0 = C1 ln(d/2) + C2

φ(ρ = D/2) = 0 = C1 ln(D/2) + C2

Solving this two equations for to determine the two constantyields the equation
for the potential function

φ(ρ) =
U0

ln(D/d)
ln

(

D
2ρ

)

Using equation 2.11 we find for the transversal electric fieldof the TEM wave

~Et = −~eρ
d
ρ

[

U0

ln(D/d)
ln

(

D
2ρ

)]

=
U0

ln(D/d)

1
ρ
~eρ

And for the transverse magnetic field, we find

~Ht =
1

ZF
~ez×

(

U0

ln(D/d)

1
ρ
~eρ

)

=
U0

ZF ln(D/d)

1
ρ
~eϕ

So we found the equations describing the transversal electric and magnetic field
of the TEM wave propagating on a coaxial transmission line.
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2.1.2 TE waves

Transverse electric waves are waves that have no axial electric field component
Ez≡ 0 but an axial magnetic field componentHz 6= 0. As we will see for TE waves
Hz plays the role of a potential function from which allother field components may
be deduced. In this case the equations 2.2 to 2.7 reduce to

~∇t × ~Et(x,y) = − jωµ~Hz

β~ez × ~Et(x,y) = ωµ~Ht(x,y)
~∇t × ~Ht(x,y) = 0

β~ez × ~Ht(x,y) = −ωε~Et(x,y) + j~ez×~∇ ·Hz
~∇t · ~Et(x,y) = 0
~∇t · ~Ht(x,y) = jβ~Hz

(2.14)

Using Helmholtz’s equation 2.1 and decomposing the operators and fields in trans-
verse and axial components we have

(~∇2
t − β2)(~Ht + ~Hz) + k2(~Ht + ~Hz) = 0

The last equation seperates in two independent ones

~∇t~Ht + (k2 − β2)~Ht = 0
~∇tHz + (k2 − β2)Hz = 0

If we introduce a new constantk2
c = (k2− β2) we have to solve the following

partial differential equation to find a solution for the function Hz(x,y)

~∇2Hz(x,y) + k2
cHz(x,y) = 0 (2.15)

To find an expresion for~HT(x,y) we calcuate the curls of equation 2.14c and use
a known identity of vector analysis

~∇t × (~∇t ×~Ht) = ~∇t(~∇ ·~Ht) − ~∇2~Ht = 0

Using equation 2.1.2a and equation 2.14f we are able to rewrite the last one in the
following form

~∇(− jβHz) + kc2~Ht = 0

and solve it to deduce~Ht from the functionHz

~Ht = − jβ
k2

c

~∇tHz(x,y) (2.16)
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To find~Et in terms of~Ht we consider the following vector product

β~ez× (~ez×~Et) = β
[

(~ez ·~Et)~ez−β(~ez ·~ez)~Et

]

= −β~Et

With the help of equation 2.14b we find for the transverse electric field~Et

~Et = −ωµ
β

~ez×~Ht = −k
β

ZF~ez×~Ht

If we introduceZFH the wave impedance of TE waves with

ZFH =
k
β

ZF (2.17)

we get the equation for the transverse electric field its finalform

~Et(x,y) = −ZFH [~ez×~Ht(x,y)] (2.18)

To find the TE waves of a given cross section one has to solve eqution 2.15 under
appropriate boundary conditions and with the help of equations 2.16 and 2.18 the
tranverse magnetic, respectivily the electric fields are derminable.

2.1.3 TM waves

The TM or E waves haveHz ≡ 0 but the axial electric field is not zero. These
modes may be considered the dual of the TE modes in that the roles of the electrci
and magnetic fields are interchanged. So in the following subsection we only will
give the results of considerations that are similair to those given in the preceeding
subsection.

First we have to find a solution for the partial differntial equation 2.19 of the
axial electric field componentEz(x,y) and to fullfill the boundary conditions.

~∇2Ez(x,y) + k2
cEz(x,y) = 0 (2.19)

These will lead to the eigenvalues of the modes. Then the transverse electric field
is given by

~Et(x,y) = − β
k2

c

~∇tEz(x,y) (2.20)

The transverse magentic field is then given by the following equation

~Ht(x,y) = YFE[~ez×~Et(x,y)] (2.21)

where we have introduced the wave addmittance of TM waves given by

YFE =
1

ZFE
=

k
β

YF (2.22)
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2.2 Rectangular waveguide

The rectangular waveguide with a cross section as illustrated in Figure 2.3 is an
example of a waveguide that will not support TEM waves. Consequently, it turns

Figure 2.3: Cross section of a rectangulare waveguide

out that unique voltage and current waves do not exist and theanalysis of the
waveguide properties has to be carried out as a field problem rather then as a
distributed circuit problem. The types of waves that can be supported in a hollow
empty wave guide are the TE and TM modes discussed in the previous section.

2.2.1 TE waves

For TE or H modes we haveEz ≡ 0 and all remaining field components can be
determined from the axial magnetic fieldHz(x,y) which has to solve equtaion
2.15. Writen in a component notation this equations reads

∂2Hz(x,y)

∂x2 +
∂2Hz(x,y)

∂y2 + k2
cHz(x,y) = 0

If we assumeHz(x,y) is writeable as a product of two independent functionX(x)
andY(y) we are able to rewrite the above equation in the following form

1
X(x)

∂X(x)

∂x2 +
1

Y(y)
∂Y(y)

∂y2 + k2
c = 0

The first term is a function ofx only, whereas the second term is a function ofy
only andk2

c is a constant. Hence the above equation can hold for allx andy values
only if each term itself is constant. These leads to the seperation condition

k2
c = k2

x + k2
y (2.23)
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So we have to solve the following ordinary differential equations

d2X(x)
dx2 + k2

xX(x) = 0

d2Y(y)
dy2 + k2

yY(y) = 0

It is well known that these ordinary differntial equations are solved from functions
like sin(), cos(), exp() or any linear combination of these functions. To further
specific the right function and the constants we have to consider the boundary
conditions that have to be imposed onH(x,y). From equation 2.16 we not that the
transverse magnetic field of a TE mode is given by the gradientof Hz. From 1.42
we known that no magnetic flux must enter the perfectly conducting walls of the
rectangulare waveguide. Hence the approprated function for Hz(x,y) has to fullfill
the following boundary conditions.

~ex · ~Ht(x = 0,y) = 0 → ∂
∂xHz(x = 0,y) = 0

~ex · ~Ht(x = a,y) = 0 → ∂
∂xHz(x = a,y) = 0

~ey · ~Ht(x,y = 0) = 0 → ∂
∂yHz(x,y = 0) = 0

~ey · ~Ht(x,y = b) = 0 → ∂
∂yHz(x,y = b) = 0

If we considerX(x) to be cos(kxx) then this function differentiated with respect to
x would become the function−sin(kxx), which fullfills automatically the bound-
ary condition atx = 0. To fullfill the boundary condition atx = a we have to
assure

sin(kxa) = 0 which leads to kx =
nπ
a

The same considerations hold true for the functionY(y). Thus we find for the
seperation constantky

ky =
mπ
b

hence as appropriate solution for theHz(x,y) we have

Hz(x,y) = Hn,mcos(
nπx
a

)cos(
mπy

b
) (2.24)

In this equation the constantHn,m is an arbitrary amplitude associated with the
mode TEn,m. As a result of the boundary conditions we find for the constant kc

kc(n,m) =

√

(
nπ
a

)2 + (
mπ
b

)2

The phase propagation constant of each mode is then given by

β(n,m) =
√

k2
0 − k2

c(n,m)
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For k0 > kc(n,m), β(n,m) is real and the mode will propagate. In the opposite
caseβ(n,m) will be imaginary and the mode will decay rapidly with the distance
from the point at which it is exited. For this reasonkc(n,m) is termed cutoff wave
number. Directly connected with its value is the cutoff wavelengthλc(n,m)

λc(n,m) =
2π

kc(n,m)

or in a slithly different form

λc(n,m) =
2a

√

n2 + (ma
b )2

(2.25)

The decay of a mode is not associated with energy loss, but is acharacteristic
feature of these solutions. Such decaying or evansescent modes may be used to
represent local diffraction or fringing fields that exist inthe vicinity of coupling
probes or obstacles in a waveguide. The frequency separating the propagation and
non-propagation bands is designated the cutoff frequencyfc(n,m)

-
λc
a

6b
a

H3,0 H2,0 H1,0

H0,1H1,1E1,1

E2,1
H2,1

H0,2 only
H1,0 mode

b b b b

0

0.2

0.4

0.6

1

0 0.5 1 1.5 2

Figure 2.4: Mode chart

fc(n,m) =
c

λc(n,m)
(2.26)

To calculate all field components of the TE modes we have to useequation 2.16
and 2.18. In generall a rectangular waveguide does also support TM modes. Since
the calculations are very similare table?? gives in summary all field components
of TE as well as TM modes, that may exist in a rectangulare waveguide.
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TE modes TM modes

Hz cos(nπx
a )cos(mπy

b )exp(− jβnmz) 0

Ez 0 sin(nπx
a )sin(mπy

b )exp(− jβnmz)

Ex ZH,nmHy − j βnmnπ
ak2

c,nm
cos(nπx

a )sin(mπy
b )exp(− jβnmz)

Ey −ZH,nmHx − j βnmmπ
bk2

c,nm
sin(nπx

a )cos(mπy
b )exp(− jβnmz)

Hx j βnmnπ
ak2

c,nm
sin(nπx

a )cos(mπy
b )exp(− jβnmz) − Ey

ZE,nm

Hy j βnmmπ
bk2

c,nm
cos(nπx

a )sin(mπy
b )exp(− jβnmz) Ex

ZE,nm

ZH,nm
k0

βnm
Z0

ZE,nm
βnm
k0

Z0

kc,nm

√

(nπ
a )2+(mπ

b )2

βnm

√

k2
0−k2

c,nm

λc,nm
2ab

√

n2b2+m2a2

Table 2.1: TE and TM field components of a rectangulare waveguide
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Power

To calculate the power that a single mode transports, we haveto evaluate the
pointing vector with the help of equation 1.31. In the case ofTE modes the elec-
tric field has only compoments in the transversal plane, while the magnetic field
has components in all directions, hence we have to examine the following cross
product

~E×~H
∗

= (Ex~ex + Ey~ey)× (H∗
x~ex + H∗

y~ey + H∗
z~ez)

~E×~H
∗

= (ExH
∗
y − EyH

∗
x)~ez − ExH

∗
z~ey + EyH

∗
z~ex

Only the first term of the last equation will contribute to a power transport in z-
direction. To compute the total power we have to integrate this term over the cross
section of the waveguide. So we find for the total powerPn,m transported by the
mode TEn,m

Pn,m =
1
2

∫ a

0

∫ b

0
Re(ExH

∗
y − EyH

∗
x)dxdy

=
1
2

∫ a

0

∫ b

0
(|Hy|2 + |Hx|2)dxdy

As result of this integration one finds

Pn,m =
1
2

ZFH(n,m)|Hn,m|2
1/2ab
δnδm

[

(
nπ
a

)2 + (
mπ
b

)2
]

(2.27)

with δn beeing the so called Neumann factor which has the following properties

δm =

{

2 for n 6= 0 andm 6= 0
1 for m = 0

2.2.2 TE10 mode

From Figure 2.4 it is clear that the TE10 mode is forb ≤ a/2 the mode with the
lowest cutoff frequency. It is the most commonly used mode, that the reason, why
we examine this mode in more detail. Table 2.2 gives a summaryof important
technical used wave guides. Instead of starting with theHz component, we rewrite
the field components of theH1,0 mode by starting with the electric field

Ey(x,z) = Ey0sin(π
ax)exp(− jkzz)

Hx(x,z) = − 1
ZFH

Ey(x,z)

Hz(x,z) = j kx
ωµEy0cos(π

ax)exp(− jkzz)

(2.28)
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Designation Frequency range Dimensions
in GHz in mm×mm

R32 2,60 - 3,95 72,14×34,04
R48 3,94 - 5,99 47,55×22,15
R70 5,38 - 8,17 34,85×15,80

R100 8,20 - 12,5 22,86×10,16
R140 11,9 - 18,0 15,80×7,90
R220 17,6 - 26,7 10,67×4,32

Table 2.2: Important waveguides

λz =
λ

√

1− (
λ
2a

)2

(2.29)

ZFH =
ZF

√

1− (
λ
2a

)2

(2.30)
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Figure 2.5: Fielddistribution of theH1,0 mode

Phase- and groupvelocicty

vPh =
ω
kz

=
f λ

√

1− (
λ
λc

)2

=
c

√

1− (
λ
λc

)2

(2.31)
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Figure 2.6: Phase- and groupvelocity ofH1,0 mode

Attenuation

~JOl = ~ex×~H(x = 0) = − j
λz/2
aZFH

Ey0~ey

~JOr = −~ex×~H(x = a) = j
λz/2
aZFH

Ey0~ey

~JOo = −~ey×~H(x) = − Eyo
ZFH

sin(π
ax)~ez− j

λz/2
aZFH

Eyocos(π
ax)~ex

~JOu = ~ey×~H(x) =
Eyo
ZFH

sin(π
ax)~ez + j

λz/2
aZFH

Eyocos(π
ax)~ex

6
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Figure 2.7: Rectangular waveguide of length∆z
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∆PW =
1
2

RO

∫ b

0

(

|~JOr|2+ |~JOl|2
)

dy∆z =
aRO

2Z2
FH

(
λz/2

a
)22

b
a
|Ey0|2∆z

∆PD =
1
2

RO

∫ a

0

(

|~JOo|2+ |~JOu|2
)

dx∆z =
aRO

2Z2
FH

(
λz/2

a
)2|Ey0|2∆z

+
aRO

2Z2
FH

|Ey0|2∆z

α =
RO

ZFb

√

1− (
fc
f
)2

(

1+2
b
a
(

fc
f
)2

)

(2.32)
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Figure 2.8: Attenuation of a R100 waveguide for different metalls

2.3 Circular waveguide

Figure 2.9 shows the cross section of a circulare wave guide.To describe its ge-
ometry cylindrical coordinates are most appropriate for the analysis to be carried
out. In the preceeding section we allready discussed that inan arbitrary hollow
cross section allways TE and TM modes will exist. To start thecalculation we first
have to study the nabla operator in a cylindrical coordinatesystem. Its transvers
components are given by

~∇t = ~eρ
∂

∂ρ
+ ~eϕ

∂
ρ∂ϕ
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Figure 2.9: Cross section of a circulare waveguide

Form equation 2.1 we known that we have to consider the squareof the nabla
operator. Compared to the cartessian case, in a cylindricalcoordinate system its
square is some what more complicated to calculate since one has to remeember
that the unit vectors~eρ and~eϕ itself are depending of theϕ-coordinate of the
system. If we rememeber this we get

~∇2
t =

∂2

∂ρ2 +
∂

ρ∂ρ
+

∂2

ρ2∂ϕ2 (2.33)

That means that the z component of the electric field has to fullfill the following
differential equation

∂2Ez

∂ρ2 +
∂Ez

ρ∂ρ
+

∂2Ez

ρ2∂ϕ2 + k2
cEz = 0

The method of seperating the variables may here also be applied to end up with
ordinary differential equations. If we supposeEz to have the following form

Ez(ρ,ϕ) = Ez0 f (ρ)g(ϕ)

we insert this into the partial differential equation and divide it by the functions
itself we get

1
f (ρ)

[

∂2 f (ρ)

∂ρ2 +
∂ f (ρ)

ρ∂ρ

]

+
1

g(ϕ)

∂2g(ϕ)

ρ2∂ϕ2 + k2
c = 0

multiplication withρ2 yields

ρ2

f (ρ)

[

∂2 f (ρ)

∂ρ2 +
∂ f (ρ)

ρ∂ρ

]

+ ρ2k2
c = − 1

g(ϕ)

∂2g(ϕ)

∂ϕ2
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The left hand side is a function ofρ only, whereas the right hand side depends
only onϕ. Therefore this equation can hold for all values of the variables only if
both sides are equal to a constant, sayν2. Hence we have

ρ2

f (ρ)

[

∂2 f (ρ)

∂ρ2 +
∂ f (ρ)

ρ∂ρ

]

+ ρ2k2
c = ν2

and

− 1
g(ϕ)

∂2g(ϕ)

∂ϕ2 = ν2

So we have to solve the following ordinary differential equations

d2 f (ρ)

dρ2 +
d f(ρ)
ρdρ +

[

ρ2k2
c − ν2

ρ2

]

f (ρ) = 0

d2g(ϕ)

dϕ2 + ν2g(ϕ) = 0

Of course of the circular structure the field inside the waveguide must be periodic
in ϕ with period 2π. Hence the general solution for the functiong(ϕ) would be
a weighted sum of cos(nϕ) and sin(nϕ), n beeing an integer. But since there is
essentialy no difference between the two function we only choose the sin function.
The term with the cos-function would then belong to a denegerated mode with
perpenddicular polarization. The differential equation for the functionf (ρ) has
also two independent solutions. The solutions are the bessel functions of first
Jn(kcρ) and second kindYn(kcρ). Since the functionYn becomes infinite asρ
approches zero, the only physically acceptable solutions are the fessel functions
of first kind. So the generallel solution for a TM mode reads
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Figure 2.10: Bessel functions of first kind
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Figure 2.11: Bessel functions of second kind
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Ez(ρ,ϕ) = Ez0sin(nϕ)Jn(kcρ)

SinceEz must vanish atρ = a, it is necessary to choosekca in such a manner that
Jn(kca) = 0. If the m’th root of the equationJn(x) = 0 is designatedpn,m. the
allowed eigenvalues ofkc are

kc(n,m) =
pn,m

a
(2.34)

The propagation constantβ(n,m) of the TM(n,m) mode is given by

β(n,m) =

√

k2 − (
pn,m

a
)2 (2.35)

Table 2.3 shows the field components and the modes of the circulare waveguide.
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TE modes TM modes

Hz Jn(
p′nmρ

a )cos(nφ)exp(− jβnmz) 0

Ez 0 Jn(
pnmρ

a )cos(nφ)exp(− jβnmz)

Hρ − j βnmp′nm
ak2

c,nm
J′n(

p′nmρ
a )cos(nφ)exp(− jβnmz) − Eφ

ZE,nm

Hφ j nβnm
ρk2

c,nm
Jn(

p′nmρ
a )sin(nφ)exp(− jβnmz)

Eρ
ZE,nm

Eρ ZH,nmHφ − j βnmpnm
ak2

c,nm
J′n(

pnmρ
a )cos(nφ)exp(− jβnmz)

Eφ −ZH,nmHρ j nβnm
ρk2

c,nm
Jn(

pnmρ
a )sin(nφ)exp(− jβnmz)

ZH,nm
k0

βnm
Z0

ZE,nm
βnm
k0

Z0

βnm

√

k2
0− (

p′nm
a )2

√

k2
0− ( pnm

a )2

kc,nm
p′nm
a

pnm
a

λc,nm
2πa
p′nm

2πa
pnm

Table 2.3: Field components of circular waveguide modes

TE
n p′n1 p′n2 p′n3
0 3,832 7,016 10,174
1 1,841 5,331 8,536
2 3,054 6,706 9,970

TM
n pn1 pn2 pn3

0 2,405 5,520 8,654
1 3,832 7,016 10,174
2 5,135 8,417 11,620

Table 2.4: Values ofp′n,m andpn,m for TE and TM modes
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2.4 Optical waveguides

2.4.1 Dielectric slab waveguide

One of the simplest dielectric waveguides is the symmetric slab waveguide shown
in Figure 2.12. It is formed by a dieletric sheet with refractive index n1 sur-

Figure 2.12: Cross section of a dielectric slab waveguide

rounded symmetrically by second dielectric having refractive indexn2 < n1. We
will search for TE modes propagating in this waveguide. Since the fields are sup-
posed to have no variations in the y-direction the transversnabla operator reduces
to

~∇t = ~ex
∂
∂x

→ ~∇2
t =

∂2

∂x2

A single wave is described by a propagation constantβ for both regions. This will
lead to differentkc values depending on the region we will consider. In the region
of refractive indexn1 we assumekc to be real and denote it bykd,

d2Hz(x)

dx2 + k2
dHz(x) = 0 for −d ≤ x≤ d

in the region of refractive indexn2 we assumekc to be imaginary and we denote
by jα:

d2Hz(x)

dx2 − α2Hz(x) = 0 for x > d

The first differential equation is solved by a sin or cos-function

Hz(x) = Hz1sin(kdx) or Hz(x) = Hz1cos(kdx)

while the last differential equation is solved by a exponential function

Hz(x) = Hz2exp(−αx) for x > d
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At the dielectric boundaryx = d the tangential electric and magnetic fields must
be continous for all values ofz. This requires that the propagation constantβ must
be same in both regions which results in the following equation

β2 = k2
1 − k2

d = k2
2 + α2

k2
1 − k2

2 = k2
d + α2

k2
0(n

2
1 − n2

2) = k2
d + α2 (2.36)

The continuity of the magnetic field at the inferface resultsin two equations de-
pending on the mode we consider

Hz1sin(kdd) = Hz2exp(−αd) or Hz1cos(kdd) = Hz2exp(−αd) (2.37)

One further relation is necessary in order to determine the quantitiesHz2/Hz1, kd

andα. This relation is obtain from the requirement that the electric field compo-
nentEy also has to be continuous atx = d. ForEy we find from equation ??

~Et = −ωµ0

β
~ez×~Ht with ~Ht = − j

β
k2

c

~∇tHz

~Et = jZ0
k2

0

k2
c

~ez× [~∇Hz] (2.38)

We have to distinguish the two regions. In the first region we havek2
c = k2

d and we
find

Ey = jZ0
k0

kd
Hz1cos(kdd) or Ey = − jZ0

k0

kd
Hz1sin(kdd)

in the second we havek2
c = −α2 and we find for the electric field

Ey = jZ0
k0

α
Hz2exp(−αx)

The continuity of the electric fields at the interface results in

1
kd

Hz1cos(kdd) =
1
α

Hz2exp(−αd) or − 1
kd

Hz1sin(kdd) =
1
α

Hz2exp(−αd)

(2.39)
If we divide equation 2.37 by equation 2.39 we find:

kdd tan(kdd) = αd or −kddcot(kdd) = αd (2.40)

With the help of equation 2.36 we introduce the so called V-number of an dielec-
tric slab waveguide:

V2 = k2
0d2(

n2
1 − n2

2

)

(2.41)
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Figure 2.13: Graphic to determine the propagation constantof a slab wavequide

and the normalized valuesu = kdd andv= αd. Thus equation 2.36 can be rewrit-
ten in the following form:

V2 = u2 + v2 (2.42)

Figure 2.13 represents equation 2.40 and 2.42 in a graphicalform. Since both
equations have to be satisfied only the points of intersection between the circle
and the functions 2.42 yield possible values ofu andv for a given dielectric slab
wavequide described by theV-Parameter.
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