WP-Modul Nachwachsende Rohstoffe

Lehrende	Dr. Jochen Michels, DECHEMA (NWR) Prof. Dr. Axel Blokesch (RKE)
Modulumfang	2 x 2 SWS Vorlesungen als Videokonferenz online
Termine	Freitag, von 11:45 bis 13:15 RKE, 14:15 bis 15:45 NWR
Prüfungsleistung	Klausur, 120 Minuten am
Beginn der Lehr- veranstaltungen	am Freitag, den 16. April 2021
Weitere Informationen	Wir empfehlen, sich die Vorlesungsunterlagen bereits vor den Vorlesungen anzusehen, so dass wir in unseren Lehrveranstaltungen mit Ihnen einen Dialog führen können.

WICHTIG: Alle Vorleistungen und Prüfungslestungen müssen fristgerecht im HIS-Portal angemeldet werden!i

WP-Modul Nachwachsende Rohstoffe

Lehrende	Dr. Jochen Michels, DECHEMA (NWR) Prof. Dr. Axel Blokesch (RKE)
auf Moodle	PDF-Datei der Power Point-Präsentationen, Artikel, Übungsaufgaben, für RKE auch PANOPTO-Aufzeichnungen vom letzten Jahr Michels/Blokesch: NaWaRo - Regen. Konvent. Energie - semesterübergreifend https://moodle.frankfurt-university.de/course/search.php?q=Michels&areaids=core_course-course Einschreibeschlüssel: RKE-NWR_2016
am Freitag live RKE	Zoom: https://fra-uas.zoom.us/j/92461904688?pwd=M1cwUzNYZU15dVBEUTIuUG9ZMHJPdz09 Meeting-ID: 924 6190 4688 Passwort: RKE-2021
am Freitag live NWR Seite 2 Prof. Dr. Blokesch, Dr. M	NWR: Big Blue Button, https://smartpartnering.com/b/joc-v6u-d4h PIN: 33485 telefonisch: +49-721-72380-127 ichels WP-Modul NWR (mit RKE) Kurzvorstellung

Modulinhalte Nachwachsende Rohstoffe

In 50 Jahren ist Erdöl aufgebraucht ...!?

Dieses Scenario war seit den 1970ern der Grund, sich um alternative Rohstoffquellen für Kraftstoffe zu kümmern. Die heutigen Herausforderungen sind spätestens seit dem Klimaschutzabkommen von Paris 2015 andere. Der Fahrplan zur Klimaneutralität 2050 steht. Nur um den richtigen Weg wird noch kräftig gestritten – Bioökonomie ist aber eine tragende Säule.

In der Vorlesung bringen wir Ihnen näher, welche Rolle Biokraftstoffe für die Mobilität spielen können und wie die chemische Industrie vermehrt auf nachwachsende Rohstoffe setzen kann.

Michels, J. 2017. Die Nutzung von Biomasse zur Herstellung von Treibstoff und Chemikalien. In: Pietzsch, J. (Hrsg.) Bioökonomie für Einsteiger. DOI 10.1007/978-3-662-53763-3

Bioökonomie war das Thema des Wissenschaftsjahres 2020

Wie können wir nachhaltiger leben, Ressourcen schonen und gleichzeitig unseren Lebensstandard sichern?

https://wissenschaftsjahr.de

Modulinhalte Nachwachsende Rohstoffe

Zeitplan Sommersemester 2021

Datum	Block	Thema
16.04.21 und 23.04.21	1	 Motivation zur Nutzung nachwachsender Rohstoffe Endlichkeit von Ressourcen, Klima, Politik Begriffe und Definitionen
30.04.21 und 7.05.21	2	 Energetische Nutzung von Biogas Mikrobiologische Grundlagen Verfahren und Anwendung
14.05.21	3	Bioethanol der ersten Generation
21.05.21	4	Bioethanol der zweiten Generation
28.05.21	5	Biobutanol
4.06.21	6	Pflanzenölkraftstoffe
11.06.21	7	Biomass To Liquid (BtL)
18.06.21 und 25.06.21	8	Biokraftstoffe WrapUp(Bio-)KraftstoffvergleichNachhaltigkeitsbetrachtung
2.07.21	9	Die biobasierte Chemische Industrie
9.07.21	10	Von der Biokraftstoffproduktion zu integrierten Bioraffinerien
16.07.21		Optional: Wiederholung / Klausurvorbereitung

Modulinhalte Regenerative & Konventionelle Energieträger (RKE)

kleinere ökologische Fußstapfen

Höhere

durch

Effizienz

Substitution

Suffizienz

in der Nutzung konventioneller Energieträger

durch regenerative Energieträger auch als

Konsistenz

bezeichnet

Beschränkung

- auf Nutzanwendung
- des eigenen Bedarfs

Huber, J.: Nachhaltige Entwicklung.

Strategien für eine ökologische und soziale Erdpolitik, Berlin 1995.

Modulinhalte RKE

Zeitplan Sommersemester 2021

Datum	Thema
16.4.2121	Einführungsvorlesung: Grundkräfte, Verteilung der
23.4.2121	Energienutzung, Ziele nachhaltiger Energienutzung
30.4.2121	Kohle
7.5.2121	Erdgas und Erdöl
14.5.2121	Atomkraft
21.5.2121	
28.5.2121	Wasserkraft
4.6.2121	Windenergie
11.6.2121	Behandlung von Übungsaufgaben
18.6.2121	Solarthermie
25.6.2121	Photovoltaik
2.7.2121	Geothermie
9.7.2121	Verteilung und Speicherung, Wasserstoff versus E-Mobilität
16.7.2121	Wiederholungen für die Klausur