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This paper applies combining forecasts of air travel demand generated from
the same model but over different estimation windows. The combination
approach used resorts to Pesaran and Pick (2011), but the empirical appli-
cation is extended in several ways. The forecasts are based on a seasonal
Box-Jenkins model (SARIMA), which is adequate to forecast monthly air
travel demand with distinct seasonal patterns at the largest German air-
port Frankfurt am Main. Furthermore, forecasts with forecast horizons from
one to twelve months-ahead, which are based on different average estimation
windows, expanding windows and single rolling windows, are compared with
baseline forecasts based on an expanding window of the observations after
a structural break. The forecast exercise shows that the average window
forecasts mostly outperform the alternative single window forecasts.
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1 Introduction
Forecasting of air travel demand has a long tradition in time series analysis and applied
econometrics. Long-term as well as short-term forecasts provide important information
for a wide range of economic and business decisions (Carson, Cenesizoglu and Parker,
2011). Long-term forecasts are important for decisions with regard to the expansion of
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airport facilities, research and development, airplane design and production planning,
but also for regional regional planning of policy makers. Short-term forecasts provide
important inputs for decisions with regard to the capacity and resource planning of
airlines and airport operators, but also for their marketing measures. Furthermore, the
air travel market is very sensitive to the prevailing business cycle and demands frequent
updating of forecasts (Uddin, McCullough and Crawford, 1985).
A popular approach to forecast air travel demand in the short-run is the seasonal

Box-Jenkins model (SARIMA). In this paper, it is shown that forecasts from such a
model can be improved considerably by combining forecasts across different estimation
windows. This new approach, proposed by Pesaran and Timmermann (2007), augments
the idea of combining forecasts into a new direction. Since the seminal paper of Bates
and Granger (1969), a extensive literature on the advantages of combining forecasts
from different models has evolved. This literature shows empirically and – as far as
possible – theoretically that, if forecasts are based on different explanatory variables
and/or different assumptions about the relations between the variables, an averaging
of forecasts with equal or estimated weights can outperform the individual forecasts
(Jungmittag, 1998 and 2010).1 Insofar, the combination of forecasts is a method to deal
with uncertainty about the proper specification and choice of a model.
Pesaran and Timmermann (2007) argue that the forecast combination procedure can

be extended to deal with other types of model uncertainty, such as uncertainty over
the size of the estimation window. They propose the idea of averaging forecasts from
the same model, but computed over different estimation windows. Using Monte Carlo
experiments, they show that this type of forecast averaging reduces the mean square
forecast error (MSFE) in many cases when the underlying relations are subject to struc-
tural breaks. Pesaran and Pick (2011) extend the approach of Pesaran and Timmermann
(2007) and apply it to financial market data before and after the credit crunch in 2007
and 2008.
The main contributions of my paper to the existing literature can be summarized

as follows. The empirical application in Pesaran and Pick (2011) is limited to a very
simple model (random walk with drift) and one-step ahead forecasts. In my paper, I
apply the more sophisticated seasonal Box-Jenkins model (SARIMA), which is adequate
to forecast monthly air travel demand with distinct seasonal patterns at the largest
German airport Frankfurt am Main. Furthermore, I compare multi-step forecasts up to
twelve months. Since, in the forecasting exercise, the average window forecasts mostly
outperform the alternative single window forecasts, the paper also contributes to the
more general literature on forecasting air travel.

2 Methodological Issues
Pesaran und Pick (2011) argue that an attractive feature of combining forecasts across
estimation windows is that no exact information about structural breaks is needed. This

1The literature is reviewed e.g. by Clemen (1989), Jungmittag (1998), Stock and Watson (2004),
Timmermann (2006) and Jungmittag (2010).
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feature distinguishes the combination approach from the usual approach of assessing
or estimating the break points and basing the forecasts only on the post-break data.
However, Pesaran and Timmermann (2007) showed that it is not always optimal to base
forecasts only on the post-break observations. Actually, the use of pre-break observations
biases the forecasts, but also decreases the forecast error variance. With regard to this
trade-off between bias and variance of forecast errors, Pesaran and Timmermann (2007)
as well as Pesaran and Pick (2011) showed that the overall effect of using pre-break data
on the mean square forecast error (MSFE) depends on the size and the point of the break
— and it is hard to assess the size of the break since it involves estimating the model over
the pre- and post-break periods.2 However, if the distance to the break (with viewing
direction from the beginning of the forecast period) is short, the post-break parameters
are likely to be poorly estimated.
To set up the basic approach of forecast averaging across estimation windows, let’s

consider the sample {yt, xt}T
t=Ti+1, with 0 ≤ Ti < T , which provides us with an obser-

vation window of the size Wi = T − Ti.3 Then, the fraction of observations in a single
window is wi = (T − Ti)/T . Starting the estimation process with a minimum window
{yt, xt}T

t=Tmin+1 of the size wmin = (T − Tmin)/T , larger windows can be considered suc-
cessively with Ti = Tmin−j, . . . , Tmin−j(m−1), providing us with m separate estimation
windows with j observations apart. Thus, the fractions of observations in the individual
estimation windows evolve as

wi = wmin +
(

i− 1
m− 1

)
(1− wmin), for i = 1, 2, . . . , m, (1)

so that wi ∈ [wmin, 1], and wm = 1 captures the whole sample. The number of estimation
windows m can be kept constant as T changes or can be allowed to rise with T . In both
cases it must hold m ≤ T (1− wmin) + 1. In this case is

wi = wmin + i− 1
T

. (2)

Based on this definition of estimation windows, the rule for combining forecasts can
be set up straightforward. The one step-ahead average window forecast is given by

ŷm,T +1 = 1
m

m∑
i=1

ŷT +1(wi), (3)

where ŷT +1(wi) is the one step-ahead forecast from an estimation window wi, and fore-
casts from all windows receive equal weights.
The aim of the following analysis is to compare single window forecasts and the average

window forecasts. In recursive estimation, the single window can be an expanding or
a rolling window, and average window forecasts can be computed by averaging over
sub-windows within a given expanding or rolling window. Thus, the average window
forecast is not an alternative to rolling forecasts (Pesaran und Pick, 2011).

2Further theoretical results with regard to this trade-off can be found in Clark and McCracken (2009).
3With regard to the notations and presentation of the basic model, I follow Pesaran and Pick (2011).
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Figure 1: Boarding passengers per month at Frankfurt airport, January 2003 until Au-
gust 2012

3 Specification of the SARIMA-Model and the
Forecasting Exercise

In the following the average windows forecast approach is applied to the monthly air
travel demand at the largest German airport Frankfurt am Main. Figure 1 shows the
boarding passengers per month at this airport from January 2003 to August 2012. The
time span up to September 2010 is used as initial estimation period and the grey shad-
owed time span is used to compute recursively one to twelve-month-ahead forecasts
applying various forecasting methods for the specified seasonal autoregressive integrated
moving average (SARIMA) model. The data show distinct seasonal patterns. Further-
more, there is an outlier in April 2010, caused by a volcanic event on Iceland. Finally,
the time series also shows a temporary decrease of air travel demand in 2008 and 2009
associated with the worldwide financial crisis and reduction of economic growth.
The distinct seasonal patterns of air travel demand suggests the use of a SARIMA

model which adopts the ARIMA framework to seasonal data. Since its introduction
at the beginning of the 1970s, the SARIMA approach became a very popular class
of models to forecast airline passengers. Thus, it is not surprising that the often
used SARIMA(0,1,1)(0,1,1) model is also called airline model.4 For monthly data, the

4This model was originally proposed by Box and Jenkins (1970).

4



Figure 2: ACF and PACF for the residuals of the SARIMA model for the whole estima-
tion period

SARIMA methodology examines the year-to-year relationships for each month of a time
series (Box, Jenkins and Reinsel, 1994), thus capturing the seasonal relationship be-
tween observations for the same month (Yt and Yt−12) in successive years. Initially, the
original time series is transformed linearly until the data is stationary and the estimated
autocorrelation function (ACF) and partial autocorrelation function (PACF) show only
a few significant, easily interpretable autocorrelations (Schulze and Prinz, 2009). The
linear transformation is done by differencing the data. Non-seasonal as well as seasonal
differencing can be applied. In the case of monthly data, seasonal differencing consists
in subtracting the values of two observations for the same month in two successive years.
Afterwards, the ACF and PACF can be used to identify the remaining AR- and MA-
terms, which have to be estimated. In the end, the residuals of the model should have
a zero mean, a constant variance, and should be serially independent.
Initially, a model for the seasonally differenced logarithmized data over the whole es-

timation period up to September 2010 is specified and estimated. It includes a constant,
a dummy variable for the volcanic event on Iceland, a non-seasonal AR(1)- and MA(1)-
term, as well as a seasonal MA(12)-term, which are all statistically highly significant.
Figure 2 shows the ACF and PACF for the residuals of this model. They allow the
conclusion that there is no remaining autocorrelation. However, a view on the actual
and fitted data as well as the residuals reveals that there is a structural break after June
2008 (Figure 3).
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Figure 3: Actual and fitted data as well as residuals of the SARIMA model for the whole
estimation period

Thus, the model was re-estimated for the post-break period from July 2008 to Septem-
ber 2010. Again, all coefficient estimates are statistically highly significant and the ACF
as well as the PACF indicate the absence of autocorrelation for the residuals (Figure 4).
Nevertheless, it can be assumed that the coefficients are only poorly estimated with the
remaining 27 observations.
To compare the performance of the different single and average window forecasts, a

forecasting exercise is carried out for short-term to medium-term forecasts horizons, 1 to
12 months ahead. The evaluation is based on recursive forecasts that involve an average
of the respective horizon forecasts over twelve recursive windows. The one-month-ahead
forecasts are starting with the forecast for October 2010 based on an estimation window
up to September 2010, the second forecast is for November 2010 based on an estimation
window up to October 2010, etc., the twelfth forecast for September 2011 is then based
on an estimation window up to August 2011. Similarly, two- to twelve-months-ahead
forecasts are carried out for twelve recursive windows. E.g. for the twelve-months-ahead
forecasts, the forecast for September 2011 is based on an window up to September 2010,
whereas the last twelve-months-ahead forecast is carried out for August 2012 based on
an estimation window until August 2011.
In the forecasting exercise, forecasts from seven different methods are compared. The

baseline forecasts (i) are based on an expanding window of the observations after the
structural break (initially 27 observations). Average window forecasts from a mini-
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Figure 4: ACF and PACF for the residuals of the SARIMA model for the post-break
estimation period

mum number of observations Wmin = 27 months and m = 5 sub-windows within (ii)
a rolling window of length Wa = 80 months and (iii) an expanding window. Further-
more, forecasts from single expanding and rolling windows are included in the com-
parison. Forecasts from the single expanding window (iv) are always based on the
available whole observation period. For the rolling windows, three variants are consid-
ered: (v) a minimum rolling window of size Wmin = 27 months, (vi) a rolling window
of size Wa = 80 months, and a (vii) rolling window of (average) effective window size
W̄ = Wa(1/5 + 2/5 + . . . + 5/5)/5 = 48 months. The latter is included, as it could
be argued that the average window forecasts are performing better because they are
actually based on a smaller average window (compared to Wa) (see Pesaran and Pick,
2011).
For each series of forecasts, the mean absolute forecast error (MAFE), the root mean

square forecast error (RMSFE), as well as the relative MAPE and RMSFE are computed.
The MAFE is defined as

MAFE = 1
N

N∑
n=1

∣∣∣ŷT−1+n+i|T−1+n − yT−1+n+i

∣∣∣ , (4)

where n is the number forecasts, T is the end of the estimation window for the first
forecast, and i is the step size of a forecast. Thus, ŷT−1+n+i|T−1+n is the i-months-ahead
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Table 1: Performance of the alternative forecasts: MAFE
Steps ahead Post-break Average windows Expanding Rolling windows

Rolling Expanding windows Wmin = 27 W̄ = 48 Wa = 80
1 month 64277 49339 47614 43396 60794 51210 44854
2 months 79597 57010 56559 54164 83141 67610 54828
3 months 83537 55388 56437 61410 75559 69548 57995
4 months 73579 73159 73331 84527 77351 91605 83210
5 months 87276 78934 77843 98291 88956 100092 92956
6 months 108776 75016 78903 109425 106511 103383 100409
7 months 101596 65773 70827 117793 92595 117097 107684
8 months 123635 70153 72195 116980 111720 123557 108958
9 months 146187 70084 64992 117594 125096 121806 102977
10 months 153646 57786 50345 117040 135178 105738 99431
11 months 159308 45988 42217 123194 144905 89125 104865
12 months 173808 46803 50210 127939 164074 75914 110093

forecast for month T − 1 + n + i based on the observations up to T − 1 + n. Similarly,
the RMSFE is given by

RMSFE =

√√√√ 1
N

N∑
n=1

(
ŷT−1+n+i|T−1+n − yT−1+n+i

)2
. (5)

4 Forecasting Results
Table 1 summarizes the mean absolute forecast errors (MAFE) for the various forecast
procedures and different months-ahead forecasts. Looking at the one month-ahead fore-
casts, it is obvious that all other forecast procedures outperform the baseline forecasts
(procedure i), based on an expanding window of the observations after the structural
break, and the single minimum rolling windows forecasts (v), based on observation
periods of 27 months. When the forecast horizon increases successively from one month-
ahead to twelve months-ahead, the strongest increase of the MAFE can be observed for
the baseline forecasts (i) and the single minimum rolling windows forecasts (v). On the
other hand, both average window forecasts show the smallest increase of the MAFE.
While the MAFE of the baseline forecasts and the minimum rolling windows forecasts
both increase by 170 percent from the one month-ahead to the twelve months-ahead
forecasts, the MAFE of the rolling average window forecasts decrease by five percent
and the MAFE of the expanding average window forecasts only increase by 5 percent.
Compared to their overall performance, the average window four and five months-ahead
forecasts are a little bit flagging, but that holds also for most other forecast procedures.
Additionally, Table 2 reports the relative MAFE, i.e. the MAFE of a certain forecast

procedure in relation to the MAFE of the baseline forecasts (procedure i). Again, it
is obvious that the average window forecasts unfold their merits with a rising forecast
horizon. For the one month-ahead forecasts the MAFE of the rolling and expanding
average window forecasts (ii and iii) are 23.2 and 25.9 percent lower than the MAFE
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Table 2: Performance of the alternative forecasts: Relative MAFE
Steps ahead Post-break Average windows Expanding Rolling windows

Rolling Expanding windows Wmin = 27 W̄ = 48 Wa = 80
1 month 1 0.768 0.741 0.675 0.946 0.797 0.698
2 months 1 0.716 0.711 0.680 1.045 0.849 0.689
3 months 1 0.663 0.676 0.735 0.904 0.833 0.694
4 months 1 0.994 0.997 1.149 1.051 1.245 1.131
5 months 1 0.904 0.892 1.126 1.019 1.147 1.065
6 months 1 0.690 0.725 1.006 0.979 0.950 0.923
7 months 1 0.647 0.697 1.159 0.911 1.153 1.060
8 months 1 0.567 0.584 0.946 0.904 0.999 0.881
9 months 1 0.479 0.445 0.804 0.856 0.833 0.704
10 months 1 0.376 0.328 0.762 0.880 0.688 0.647
11 months 1 0.289 0.265 0.773 0.910 0.559 0.658
12 months 1 0.269 0.289 0.736 0.944 0.437 0.633

Table 3: Performance of the alternative forecasts: RMSFE
Steps ahead Post-break Average windows Expanding Rolling windows

Rolling Expanding windows Wmin = 27 W̄ = 48 Wa = 80
1 month 90816 64098 61128 61668 84312 67355 60563
2 months 103286 73672 71984 77775 103306 96760 75277
3 months 112188 74856 75890 90780 104359 99615 85043
4 months 99680 84139 84097 107060 101631 123152 102443
5 months 125019 92025 90159 115322 128209 129041 109101
6 months 156889 90692 92873 121611 154600 128613 111330
7 months 136701 80408 82844 126842 132205 139295 117477
8 months 158673 80088 82336 126465 152381 135402 118884
9 months 175420 87329 83083 129755 161870 137623 120016
10 months 201446 73081 68540 126337 194643 122990 114611
11 months 209968 60674 61659 131191 204749 102250 114845
12 months 230733 68609 70230 137322 226936 100881 119217

of the baseline forecasts (i). From the three months-ahead to the twelve months-ahead
forecasts the average window procedures outperform all other forecast procedures to
an increasing degree. For the twelve months-ahead forecasts, the MAFE of the two
average window forecast procedures are 73.1 and 71.1 percent lower than the MAFE of
the baseline forecasts.
The root mean square forecast errors (RMSFE) displayed in Table 3 can provide

same further insight into the performance of the different forecast procedures, because
this measure weights larger forecast errors stronger than smaller ones, while the MAFE
weights each error identically. On the whole, the RMSFE largely confirm the conclu-
sions drawn from the MAFE. The only difference is perhaps that the average window
four and five months ahead forecasts are not flagging so strongly as suggested by the
MAFE. Finally, Table 4 shows the relative RMSFE, again calculated as the RMSFE of
a certain in relation to the RMSFE of the baseline forecasts (i). Referred to this forecast
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Table 4: Performance of the alternative forecasts: Relative RMSFE
Steps ahead Post-break Average windows Expanding Rolling windows

Rolling Expanding windows Wmin = 27 W̄ = 48 Wa = 80
1 month 1 0.706 0.673 0.679 0.928 0.742 0.667
2 months 1 0.713 0.697 0.753 1.000 0.937 0.729
3 months 1 0.667 0.676 0.809 0.930 0.888 0.758
4 months 1 0.844 0.844 1.074 1.020 1.235 1.028
5 months 1 0.736 0.721 0.922 1.026 1.032 0.873
6 months 1 0.578 0.592 0.775 0.985 0.820 0.710
7 months 1 0.588 0.606 0.928 0.967 1.019 0.859
8 months 1 0.505 0.519 0.797 0.960 0.853 0.749
9 months 1 0.498 0.474 0.740 0.923 0.785 0.684
10 months 1 0.363 0.340 0.627 0.966 0.611 0.569
11 months 1 0.289 0.294 0.625 0.975 0.487 0.547
12 months 1 0.297 0.304 0.595 0.984 0.437 0.517

performance measure, both average window forecast procedures outperform all other
forecast procedures already from the two months-ahead forecasts upwards. Furthermore
again, both average window forecast procedures achieve the best relative performance
at the eleven and twelve months-ahead forecasts. Here, the RMSFE are approximately
70 percent lower that the RMSFE of the baseline forecasts, and still 30 to 40 percent
lower than the RMSFE of the rolling windows forecasts based on a window size of 48
months.

5 Conclusion
In this paper, I analyzed whether forecasts of air travel demand—which is very sensi-
tive to business cycles and perhaps structural breaks—can be improved by combining
forecasts across different estimation windows. One result is very obvious: In relation
to the MAFE and RMSFE, nearly every thing provides better forecasts than just using
the observations from the post-break period. However, the proposed average window
forecasts mostly outperform the alternative single window forecasts. Furthermore, the
results reveal that the average window forecasts unfold their whole merits with a rising
forecast horizon: the relative performance of these forecasts is the stronger, the longer
the forecast horizon.
More generally, averaging of forecasts over different estimation windows offers a sim-

ple approach to generating forecasts that are reasonably robust to structural breaks of
unknown dates and sizes. Therefore, the average windows approach surely would be
fruitful for other market or sales forecast tasks. The approach also will likely improve
the forecast accuracy of other models, e.g. with independent explanatory variables. This
is left for future research, but first results in this direction give reason for well-founded
hope (cf. Giraitis, Kapetanios and Price, 2013; Pesaran, Pick and Pranovich, 2013; Tian
and Anderson, 2014).
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